Recovery of Recurrent Parent Genome in a Marker-Assisted Backcrossing Against Rice Blast and Blight Infections Using Functional Markers and SSRs
Abstract
:1. Introduction
2. Results
2.1. Foreground Selection of F1 Hybrids and Backcross Populations
2.2. Marker-Assisted Background Selection of Backcross Populations
2.3. Recurrent Parent Genome Recovery of the Selected Improved BC2F2 Lines
2.4. Genetic Increase of the Recurrent Parent Genome Size in Backcross Generations
2.5. Genetic Decrease of the Donor Parent Genome Size in Backcross Generations
2.6. Agronomic Performance of Selected Backcross Lines
3. Discussions
4. Materials and Methods
4.1. Source of Germplasm and Breeding Procedure
4.2. Extraction of DNA and Molecular Marker Screening
4.3. DNA Scoring
4.4. Foreground and Background Selections
4.5. Phenotypic Selection, Characterization for Agro-Morphological Traits and Data Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Hasan, M.M.; Oladosu, Y.A.; Magaji, U.G.; Akos, I.; Olalekan, K.K. Bacterial leaf blight resistance in rice: A review of conventional breeding to molecular approach. Mol. Biol. Rep. 2019, 46, 1519–1532. [Google Scholar] [CrossRef] [PubMed]
- Oladosu, Y.; Rafii, M.Y.; Samuel, C.; Fatai, A.; Magaji, U.; Kareem, I.; Kamarudin, Z.S.; Muhammad, I.I.; Kolapo, K. Drought Resistance in Rice from Conventional to Molecular Breeding: A Review. Int. J. Mol. Sci. 2019, 20, 3519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oladosu, Y.; Rafii, M.Y.; Fatai, A.; Chukwu, S.C.; Muhammad, I.; Kareem, I.; Salisu, M.A.; Arolu, I.W. Submergence tolerance in rice: Review of mechanism, breeding and, future prospects. Sustainability 2020, 12, 1632. [Google Scholar] [CrossRef] [Green Version]
- Oladosu, Y.; Rafii, M.Y.; Magaji, U.; Abdullah, N.; Miah, G.; Chukwu, S.C.; Hussin, G.; Ramli, A.; Kareem, I. Genotypic and phenotypic relationship among yield components in rice undertropical conditions. Biomed Res. Int. 2018, 2018, 8936767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabri, R.S.; Rafii, M.Y.; Ismail, M.R.; Yusuff, O.; Chukwu, S.C.; Hasan, N. Assessment of Agro-Morphologic Performance, Genetic Parameters and Clustering Pattern of Newly Developed Blast Resistant Rice Lines Tested in Four Environments. Agronomy 2020, 10, 1098. [Google Scholar] [CrossRef]
- Singh, A.K.; Sarma, B.K.; Singh, P.K.; Nandan, R. Screening of rice (Oryzasativa L.) germplasms against Xanthomonas oryzae pv. oryzae. J. Eco-Friendly Agric. 2013, 8, 86–88. [Google Scholar]
- Hasan, M.M.; Rafii, M.Y.; Ismail, M.R.; Mahmood, M.; Rahim, H.A.; Alam, M.A.; Ashkani, S.; Malek, M.A.; Latif, M.A. Marker-assisted backcrossing: A useful method for rice improvement. Biotechnol. Biotechnol. Equip. 2015, 29, 237–254. [Google Scholar] [CrossRef] [Green Version]
- Matthew, R. Backcrossing, Backcross (BC) Population and Backcross Breeding. In Plant Breeding and Genomics; The Ohio State University: Columbus, OH, USA, 2012. [Google Scholar]
- Akos, I.S.; Yusop, M.R.; Ismail, M.R.; Ramlee, S.I.; Shamsudin, N.A.; Ramli, A.B.; Haliru, B.S.; Muhammad, I.; Chukwu, S.C. A review on gene pyramiding of agronomic, biotic and abiotic traits in rice variety development. Int. J. Appl. Biol. 2019, 3, 65–96. [Google Scholar]
- Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Oladosu, Y.; Muhammad, I.I.; Ubi, B.E.; Nwokwu, G. Genetic analysis of microsatellites associated with resistance against bacterial leaf blight and blast diseases of rice (Oryzasativa L.). Biotechnol. Biotechnol. Equip. 2020, 34, 898–904. [Google Scholar] [CrossRef]
- Laha, G.S.; Reddy, C.S.; Krishnaveni, D. Bacterial blight of rice and its management. In Technical Bulletin No. 41; Directorate of Rice Research (ICAR): Hyderabad, India, 2009; 37p. [Google Scholar]
- Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Oladosu, Y.; Okporie, E.; Onyishi, G.; Utobo, E.; Ekwu, L.; Swaray, S.; et al. Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryzasativa L.). Biotechnol Biotechnol. Equip. 2019, 33, 440–455. [Google Scholar] [CrossRef] [Green Version]
- Collard, B.C.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the 21st century. Phil. Trans. R. Soc. B 2008, 363, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Hospital, F. Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics 2011, 158, 1363–1379. [Google Scholar]
- Mackill, D. From genes to farmers’ fields. Rice Today 2006, 5, 28–31. Available online: www.irri.org/publications/today/pdfs/5-4/28-31.pdf (accessed on 15 February 2020).
- Cuc, L.M.; Huyen, L.T.; Hien, P.T.; Hang, V.T.; Dam, N.Q.; Mui, P.T.; Quang, V.D.; Ismail, A.M.; Ham, L.H. Application of marker assisted backcrossing to introgress the submergence tolerance QTLSUB1 into the Vietnamelite rice variety-AS996. Am. J. Plantscience 2012, 3, 528. [Google Scholar]
- Lau, W.C.; Rafii, M.Y.; Ismail, M.R.; Puteh, A.; Latif, M.A.; Asfaliza, R.; Miah, G. Development of advanced fragrant rice lines from MR269 × Basmati 370 through marker-assisted backcrossing. Euphytica 2017, 213, 11. [Google Scholar] [CrossRef]
- Kazeem, K.O.; Rafii, M.Y.; Azrul, M.S.; Mahmud, T.M.M.; Khairulmazmi, A.; Azizah, M.; Tanweer, F.A.; Oladosu, Y.; Ibrahim, W.A.; Chukwu, S.; et al. Analysis of Recurrent Parent Genome Recovery in Marker-Assisted Backcross Breeding Program in Watermelon. Int. J. Sci. Technol. Res. 2019, 8, 945–955. [Google Scholar]
- Miah, G.; Rafii, M.Y.; Ismail, M.R.; Puteh, A.B.; Rahim, H.A.; Latif, M.A. Recurrent parent genome recovery analysis in a marker-assisted backcrossing program of rice (Oryzasativa L.). Comptes Rendus Biol. 2015, 338, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Neeraja, C.N.; Maghirang-Rodriguez, R.; Pamplona, A.; Heuer, S.; Collard, B.C.; Septiningsih, E.M.; Vergara, G.; Sanchez, D.; Xu, K.; Ismail, A.M.; et al. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor. Appl. Genet. 2007, 115, 767–776. [Google Scholar] [CrossRef]
- Yi, M.; Nwe, K.T.; Vanavichit, A.; Chai-arree, W.; Toojinda, T. Marker assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar Manawthukha. Field Crop. Res. 2009, 113, 178–186. [Google Scholar] [CrossRef]
- Sundaram, R.M.; Vishnupriya, M.R.; Biradar, S.K.; Laha, G.S.; Reddy, G.A.; Rani, N.S.; Sarma, N.P.; Sonti, R.V. Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 2008, 160, 411–422. [Google Scholar] [CrossRef]
- Sabu, K.K.; Abdullah, M.Z.; Lim, L.S.; Wickneswari, R. Development and evaluation of advanced backcross families of rice for agronomically important traits. Commun. Biometry Crop Sci. 2006, 1, 111–123. [Google Scholar]
- Martínez, C.P.; Tohme, J.; López, J.; Borrero, J.; McCouch, S.R.; Almeida, A. Identification and utilization of genes from wild rice germplasm for the improvement of yield and stress resistance. In Proceedings of the 27th Rice Technical Working Group, Reno, NV, USA, 1–4 March 1998. [Google Scholar]
- Hossain, M.B.; Islam, M.O.; Hasanuzzaman, M. Influence of different nitrogen levels on the performance of four aromatic rice varieties. Int. J. Agric. Biol. 2008, 10, 693–696. [Google Scholar]
- Dutta, R.K.; Mia, M.B.; Khanam, S. Plant architecture and growth characteristics of fine grain and aromatic rice sand the irrelation with grain yield. Int. Rice Comm. Newsl. 2002, 51, 51–55. [Google Scholar]
- Kusutani, A.; Tovata, M.; Asanuma, K.; Cui, J. Studies on the varietal differences of harvest index and morphological characteristics of rice. Jpn. J. Crop Sci. 2000, 69, 359–364. [Google Scholar]
- Shi, C.; Zhu, J.; Wu, J.; Fan, L. Genetic and genotype × environment interaction effects from embryo, endosperm, cytoplasm and maternal plant for rice grain shape traits of indica rice. Field Crops Res. 2000, 68, 191–198. [Google Scholar] [CrossRef]
- Sarif, H.M.; Rafii, M.Y.; Ramli, A.; Oladosu, Y.; Musa, H.M.; Rahim, H.A.; Zuki, Z.M.; Chukwu, S.C. Genetic diversity and variability among pigmented rice germplasm using molecular marker and morphological traits. Biotechnol. Biotechnol. Equip. 2020. [Google Scholar] [CrossRef]
- Juliano, B.O. Rice in Human Nutrition. Food and Agriculture Organization of the United Nations, Rome (FAO), International Rice Research Institute. Available online: http://books.irri.org/9251031495_content.pdf.1993 (accessed on 6 November 2019).
- Shi, C.; Zhu, J. Genetic analysis of endosperm, cytoplasmic and maternal effects for exterior quality traits in indica rice. J. Biomath. 1996, 11, 73–81. [Google Scholar]
- Reflinur, K.B.; Jang, S.M.; Chu, S.H.; Bordiya, Y.; Akter, M.B.; Lee, J.; Chin, J.H.; Koh, H.J. Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice 2014, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Koide, Y.; Onishi, K.; Nishimoto, D.; Baruah, A.R.; Kanazawa, A.; Sano, Y. Sex-independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. New Phytol. 2008, 179, 888–900. [Google Scholar] [CrossRef]
- Shanmugavadivel, P.S.; Mithra, S.A.; Dokku, P.; Kumar, K.A.; Rao, G.J.; Singh, V.P.; Singh, A.K.; Singh, N.K.; Mohapatra, T. Mapping quantitative trait loci (QTL) for grain size in rice using a RIL population from Basmati × indica cross showing high segregation distortion. Euphytica 2013, 194, 401–416. [Google Scholar] [CrossRef]
- Chen, J.; Ding, J.; Ouyang, Y.; Du, H.; Yang, J.; Cheng, K.; Zhao, J.; Qiu, S.; Zhang, X.; Yao, J.; et al. Atriallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica–japonica hybrids in rice. Proc. Natl. Acad. Sci. USA 2008, 105, 11436–11441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.P.; Ko, P.Y.; Lee, W.C.; Wei, F.J.; Kuo, S.C.; Ho, S.W.; Hour, A.L.; Hsing, Y.I.; Lin, Y.R. Comparative analyses of linkage maps and segregation distortion of two F2 populations derived from japonica crossed with indicarice. Hereditas 2010, 147, 225–236. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kimura, T.; Terakami, S.; Nishitani, C.; Sawamura, Y.; Saito, T.; Kotobuki, K.; Hayashi, T. Integrated reference genetic link age maps of pear based on SSR and AFLP markers. Breed. Sci. 2007, 57, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Rajpurohit, D.; Kumar, R.; Kumar, M.; Paul, P.; Awasthi, A.; Basha, P.O.; Puri, A.; Jhang, T.; Singh, K.; Dhaliwal, H.S. Pyramiding of two bacterial blight resistance and a semi dwarfing gene in Type 3 Basmatiusing marker-assisted selection. Euphytica 2011, 178, 111–126. [Google Scholar] [CrossRef]
- Okporie, E.O.; Chukwu, S.C.; Onyishi, G.C. Phenotypic recurrent selection for increase yield and chemical constituents of maize (Zea mays L.). World Appl. Sci. J. 2013, 21, 994–999. [Google Scholar]
- Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Oladosu, Y.A.; Olalekan, K.K.; Musa, I.; Halidu, J.; Muhammad, I.; Ahmed, M. Marker-assisted introgression of multiple resistance genes confers broad spectrum resistance against bacterial leaf blight and blast diseases in Putra-1 rice variety. Agronomy 2020, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 39–40. [Google Scholar]
- Ashkani, S.; Rafii, M.Y.; Rusli, I.; Sariah, M.; Abdullah, S.N.A.; Rahim, H.A.; Latif, M.A. SSRs for Marker-Assisted Selection for Blast Resistance in Rice (Oryzasativa L.). Plant Mol. Biol. Report. 2012, 30, 79–86. [Google Scholar] [CrossRef]
- IRRI. Standard Evaluation System for Rice, 4th ed.; International Rice Research Institute: Manila, Philippines, 1996. [Google Scholar]
- van Berloo, R. GGT2.0: Versatile software for visualization and analysis of genetic data. J. Hered. 2008, 99, 232–236. [Google Scholar] [CrossRef] [Green Version]
Molecular Marker | Chro. No. | Marker Segregation Analysis | χ2 (1:1) | |
---|---|---|---|---|
BLB | A | H | ||
Xa21FR | 11 | 122 | 108 | 0.85 |
Xa13prom | 8 | 110 | 125 | 0.96 |
RM13 | 5 | 130 | 118 | 0.58 |
MP | 4 | 100 | 122 | 2.18 |
Blast | ||||
RM8225 | 6 | 120 | 112 | 0.28 |
RM6836 | 6 | 120 | 112 | 0.28 |
Molecular Marker | Chro. No. | Marker Segregation Analysis | χ2 (1:1) | |
---|---|---|---|---|
BLB | A | H | ||
Xa21FR | 11 | 130 | 106 | 2.44 |
Xa13prom | 8 | 121 | 106 | 0.99 |
RM21 | 11 | 130 | 106 | 2.44 |
MP | 4 | 112 | 96 | 1.23 |
Blast | ||||
RM8225 | 6 | 128 | 108 | 1.70 |
RM6836 | 6 | 128 | 108 | 1.70 |
Molecular Marker | Chro. No. | Marker Segregation Analysis | χ2 (1:1) | ||
---|---|---|---|---|---|
BLB | A | H | B | ||
Xa21FR | 11 | 176 | 25 | 17 | 361.40 |
Xa13prom | 8 | 129 | 57 | 32 | 135.94 |
RM21 | 11 | 176 | 25 | 17 | 361.40 |
MP | 4 | 49 | 54 | 115 | 95.47 |
Blast | |||||
RM8225 | 6 | 69 | 100 | 49 | 4.80 |
RM6836 | 6 | 69 | 100 | 49 | 4.80 |
Improved Lines | PH (cm) | FLWR | NP/H | DF | DM | NT | PL (cm) | TNG/P | 1000GW (g) | TGW/H (g) | SLWR | Y/HA (t/ha) | %RPGR | P7.7 | P7.2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BC2F2–157 | 103.01 | 13.46 | 11 | 72 | 108 | 11 | 38.56 | 154 | 78.63 | 57.42 | 3.39 | 9.18 | 97.10 | HR | HR |
BC2F2–122 | 117.01 | 13.20 | 13 | 78 | 102 | 15 | 31.96 | 152 | 81.83 | 53.64 | 3.84 | 8.58 | 94.30 | R | HR |
BC2F2–9 | 110.51 | 12.24 | 15 | 73 | 106 | 17 | 30.06 | 137 | 82.83 | 59.28 | 3.65 | 9.48 | 94.00 | R | HR |
BC2F2–196 | 109.21 | 9.74 | 20 | 75 | 103 | 18 | 34.06 | 172 | 76.33 | 56.28 | 4.10 | 9.00 | 96.00 | HR | HR |
BC2F2–120 | 114.71 | 13.06 | 16 | 74 | 105 | 14 | 34.36 | 177 | 81.93 | 60.70 | 3.88 | 9.71 | 96.30 | R | HR |
BC2F2–208 | 102.21 | 11.49 | 17 | 79 | 109 | 18 | 29.56 | 142 | 80.63 | 44.47 | 3.93 | 7.11 | 93.30 | R | HR |
BC2F2–155 | 117.51 | 11.66 | 15 | 77 | 110 | 17 | 29.66 | 136 | 78.63 | 45.12 | 3.82 | 7.22 | 97.90 | R | HR |
BC2F2–4 | 119.81 | 17.55 | 22 | 76 | 104 | 26 | 30.16 | 196 | 79.53 | 49.90 | 4.18 | 7.98 | 98.70 | HR | HR |
BC2F2–109 | 115.71 | 13.32 | 17 | 72 | 107 | 15 | 32.56 | 166 | 76.83 | 46.06 | 3.99 | 7.37 | 93.20 | R | HR |
BC2F2–161 | 112.51 | 12.14 | 14 | 79 | 107 | 16 | 32.66 | 207 | 82.53 | 63.98 | 3.96 | 10.23 | 95.60 | R | R |
BC2F2–144 | 114.01 | 15.03 | 13 | 77 | 102 | 12 | 33.76 | 203 | 77.93 | 43.61 | 4.04 | 6.98 | 95.80 | R | HR |
BC2F2–1 | 118.51 | 11.08 | 20 | 75 | 105 | 17 | 31.96 | 205 | 81.33 | 41.51 | 3.75 | 6.64 | 96.90 | R | HR |
BC2F2–50 | 96.51 | 15.28 | 16 | 74 | 109 | 18 | 34.26 | 209 | 77.33 | 73.83 | 4.21 | 11.81 | 94.10 | R | HR |
BC2F2–172 | 106.51 | 16.30 | 13 | 76 | 106 | 15 | 30.86 | 211 | 80.63 | 48.17 | 2.93 | 7.70 | 96.10 | R | HR |
BC2F2–166 | 104.01 | 9.74 | 14 | 75 | 103 | 17 | 34.06 | 172 | 76.33 | 56.28 | 4.10 | 9.00 | 96.90 | R | R |
BC2F2–14 | 108.71 | 15.03 | 13 | 77 | 102 | 11 | 33.76 | 203 | 77.93 | 43.61 | 4.04 | 6.98 | 98.50 | R | HR |
Mean | 110.65a | 13.14a | 15.94a | 75.75a | 105.8 a | 16.06 a | 32.64 a | 177.6 a | 79.45 a | 52.74 a | 3.86 a | 8.44 a | 95.9 | ||
SE | ±1.13 | ±0.48 | ±0.84 | ±0.66 | ±0.66 | ±0.89 | ±0.62 | ±7.40 | ±0.54 | ±2.32 | ±0.08 | ±0.37 | |||
116.50b | 12.56b | 15.00 b | 85.67b | 120.67 b | 15.00 b | 31.83 b | 148.00 b | 75.53 b | 50.41 b | 3.92 b | 8.07 b | ||||
Recurrent Parent | |||||||||||||||
SE | ±1.40 | ±0.97 | ±0.58 | ±1.45 | ±0.88 | ±0.58 | ±1.05 | ±3.61 | ±0.75 | ±1.86 | ±0.11 | ±0.30 |
S/n | Name of Polymorphic SSR Markers Identified | Chro. No. Position |
---|---|---|
1 | RM313, RM309, RM463, RM7376, RM117, RM28076, RM1261, RM415 | 12 |
2 | pTA248, Xa21FR, RM6293, RM206, RM21 | 11 |
3 | RM1375, RM294A, RM333, RM375 | 10 |
4 | RM23865, RM410, RM342, OSR28, RM219, RM160 | 9 |
5 | RM547, RM447, RM6208, RM25, RM310, RM544, RM5556, RM3761, Xa13prom | 8 |
6 | RM72, RM336, RM1134, RM10, RM432, RM1973 | 7 |
7 | RM588, RM508, RM6836, RM8225, RM402 | 6 |
8 | RM13, RM1089, RM1237, RM305, RM233A, RM1253, RM122 | 5 |
9 | MP, RM518, RM8213, RM241, RM127, RM3843, RM261 | 4 |
10 | RM1, RM520, SSR21, RM6308, RM232, RM130 | 3 |
11 | RM262, RM525, RM573, RM452, RM250, RM5390, RM561, RM211, RM3248 | 2 |
12 | RM431, RM272, RM302, RM10025, SSR23, SSR13, SSR26 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Oladosu, Y.; Muhammad, I.; Musa, I.; Ahmed, M.; Jatto, M.I.; Yusuf, B.R. Recovery of Recurrent Parent Genome in a Marker-Assisted Backcrossing Against Rice Blast and Blight Infections Using Functional Markers and SSRs. Plants 2020, 9, 1411. https://doi.org/10.3390/plants9111411
Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Oladosu Y, Muhammad I, Musa I, Ahmed M, Jatto MI, Yusuf BR. Recovery of Recurrent Parent Genome in a Marker-Assisted Backcrossing Against Rice Blast and Blight Infections Using Functional Markers and SSRs. Plants. 2020; 9(11):1411. https://doi.org/10.3390/plants9111411
Chicago/Turabian StyleChukwu, Samuel Chibuike, Mohd Y. Rafii, Shairul Izan Ramlee, Siti Izera Ismail, Yusuff Oladosu, Isma’ila Muhammad, Ibrahim Musa, Muideen Ahmed, Muhammed Itopa Jatto, and Bashir Rini Yusuf. 2020. "Recovery of Recurrent Parent Genome in a Marker-Assisted Backcrossing Against Rice Blast and Blight Infections Using Functional Markers and SSRs" Plants 9, no. 11: 1411. https://doi.org/10.3390/plants9111411