Phytochemical Screening, Antibacterial, Antifungal, Antiviral, Cytotoxic, and Anti-Quorum-Sensing Properties of Teucrium polium L. Aerial Parts Methanolic Extract
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Composition
2.2. Cytotoxicity Assay
2.3. Antimicrobial Activities
2.4. Antiviral Activities
2.5. Anti-Quorum-Sensing Activities
3. Discussion
4. Materials and Methods
4.1. Plant Material Sampling and Extract Preparation
4.2. Identification of Bioactive Molecules by Liquid Chromatography Coupled with High Resolution Mass Spectrometry
4.3. Evaluation of the Cytotoxicity
4.4. Antimicrobial Activities
4.4.1. Selected Microorganisms
4.4.2. Antibacterial and Antifungal Activity Using Disc Diffusion Assay
4.4.3. MICs and MBCs/MFCs Determination Using the Microdilution Assay
4.4.4. Antiviral Activities
4.5. Anti-Quorum Sensing Activity
4.5.1. Bioassay for Quorum-Sensing Inhibitory (QSI) Activity Using Chromobacterium Violaceum CV026
4.5.2. Violacein Inhibition Assays Using Chromobacterium Violaceum CV12472
4.5.3. Swarming and Swimming Motility Assays Using Pseudomonas Aeruginosa PA01
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cragg, G.M.; Newman, D.J. Biodiversity: A continuing source of novel drug leads. Pure Appl. Chem. 2005, 77, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Yun, B.W.; Yan, Z.; Amir, R.; Hong, S.; Jin, Y.W. Plant natural products: History, limitations and the potential of cambial meristematic cells. Biotechnol. Genet. Eng. 2012, 28, 47–60. [Google Scholar] [CrossRef]
- Anand, U.; Jacobo Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Essa, M.A.; Al-Mehaidib, A.; Al-Gain, S. Parental awareness of the liver disease among children in Saudi Arabia. Ann. Saudi Med. 1998, 8, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Alfarhan, A.A.H. Phytogeographical analysis of the floristic elements in Saudi Arabia. Pak. J. Biol. Sci. 1999, 2, 702–711. [Google Scholar]
- Aati, H.; El-Gamal, A.; Shaheen, H.; Kayser, O. Traditional use of ethnomedicinal native plants in the Kingdom of Saudi Arabia. J. Ethnobiol. Ethnomedicine 2019, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Borchardt, J.K. The beginnings of drug therapy: Ancient mesopotamian medicine. Drug News Perspect. 2002, 15, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Sneader, W. Drug Discovery: A History; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardini, S.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Natural products for human health: An historical overview of the drug discovery approaches. Nat. Prod. Res. 2018, 32, 1926–1950. [Google Scholar] [CrossRef]
- Kinghorn, A.D.; Pan, L.; Fletcher, J.N.; Chai, H. The relevance of higher plants in lead compound discovery programs. J. Nat. Prod. 2011, 74, 1539–1555. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug Resistance: An Emerging Crisis. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 541340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frieri, M.; Kumarb, K.; Boutinc, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the Era of antimicrobial resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Pelgrifta, R.Y.; Friedmanbc, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 2013, 65, 1803–1815. [Google Scholar] [CrossRef] [PubMed]
- Savoia, D. Plant-derived antimicrobial compounds alternatives to antibiotics. Future Microbiol. 2012, 7, 979–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, J.; Chandra, H.; Nautiyal, A.R.; Karla, S.J.S. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections. 3 Biotech. 2014, 4, 451–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyay, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Venkitanarayanan, K. Combating pathogenic microorganisms using plant-derived antimicrobials: A minireview of the mechanistic basis. Biomed. Res. Int. 2014, 2014, 761741. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.D.; Birdi, T.J. Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med. 2017, 8, 266–275. [Google Scholar] [CrossRef]
- Subramani, R.; Narayanasamy, M.; Feussner, K.D. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech. 2017, 7, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control. 2019, 8, 118–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossa, J.S.; AI-Yahya, M.A.; AI-Meshal, I.A. Medicinal Plants of Saudi Arabia; King Fahad National Library Publication Riyadh: Riyadh, Saudi Arabia, 2000; p. 001-355. [Google Scholar]
- Rahman, M.A.; Mossa, J.S.; Al-Said, M.S.; Al-Yahya, M.A. Medicinal plant diversity in the flora of Saudi Arabia 1: A report on seven plant families. Fitoterapia 2004, 75, 149–161. [Google Scholar] [CrossRef]
- Bukhari, N.A.; Al-Otaibi, R.A.; Ibhrahim, M.M. Biodiversity characteristics of Teucrium polium species in Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 181–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulila, A.; Béjaoui, A.; Messaoud, C.; Boussaid, M. Variation of volatiles in Tunisian populations of Teucrium polium L. (Lamiaceae). Chem. Biodivers. 2008, 5, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Menichini, F.; Conforti, F.; Rigano, D.; Formisano, C.; Piozzi, F. Phytochemical composition, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece. Food Chem. 2009, 115, 679–686. [Google Scholar] [CrossRef]
- Djabou, N.; Lorenzi, V.; Guinoiseau, E.; Andreani, S.; Giuliani, M.C. Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control. 2013, 30, 354–363. [Google Scholar] [CrossRef]
- Belmekki, N.; Bendimerad, N.; Bekhechi, C.; Fernandez, X. Chemical analysis and antimicrobial activity of Teucrium polium L. essential oil from Western Algeria. J. Med. Plant. Res. 2013, 7, 897–902. [Google Scholar]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Lyoussi, B. Phytochemistry, antioxidant and antibacterial activities of two Moroccan Teucrium polium L. subspecies: Preventive approach against nosocomial infections. Arab. J. Chem. 2020, 13, 3866–3874. [Google Scholar] [CrossRef]
- Ulubelen, A.; Topu, G.; Sönmez, U. Chemical and biological evaluation of genus Teucrium. Stud. Nat. Prod. Chem. 2000, 23, 591–648. [Google Scholar]
- Shahraki, M.R.; Arab, M.R.; Mirimokaddam, E.; Palan, M.J. The Effect of Teucrium polium (Calpoureh) on Liver function, Serum Lipids and Glucose in Diabetic Male Rats. Iran. Biomed. J. 2007, 11, 65–68. [Google Scholar] [PubMed]
- Khazaei, M.; Nematollahi-Mahani, S.N.; Mokhtari, T.; Sheikhbahaei, F. Review on Teucrium polium biological activities and medical characteristics against different pathologic situations. J. Contemp. Med. Sci. 2018, 4, 1–6. [Google Scholar]
- Milošević-Djordjević, O.; Jakovljević, M.R.; Marković, A.; Stanković, M.; Ćirić, A.; Marinković, D.; Grujičić, D. Polyphenolic contents of Teucrium polium L. and Teucrium scordium L. associated with their protective effects against MMC-induced chromosomal damage in cultured human peripheral blood lymphocytes. Turk. J. Biol. 2018, 42, 152–162. [Google Scholar] [PubMed]
- Proestos, C.; Sereli, D.; Komaitis, M. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chem. 2006, 95, 44–52. [Google Scholar] [CrossRef]
- Mitreski, I.; Petreska Stanoeva, J.; Stefova, M.; Stefkov, G.; Kulevanova, S. Polyphenols in representative Teucrium species in the Flora of R. Macedonia: LC/DAD/ESI-MSn profile and content. Nat. Prod. Commun. 2014, 9, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.M.M.; Shah, S.M.H. Phytochemicals, antioxidant, antinociceptive and anti-inflammatory potential of the aqueous extract of Teucrium stocksianum bioss. BMC Complement. Altern. Med. 2015, 15, 351. [Google Scholar] [CrossRef] [Green Version]
- Elmasri, W.A.; Hegazy, M.-E.F.; Mechref, Y.; Paré, P.W. Structure-antioxidant and anti-tumor activity of Teucrium polium phytochemicals. Phytochem. Lett. 2016, 15, 81–87. [Google Scholar] [CrossRef]
- De Marino, S.; Festa, C.; Zollo, F.; Incollingo, F.; Raimo, G.; Evangelista, G.; Iorizzi, M. Antioxidant activity of phenolic and phenylethanoid glycosides from Teucrium polium L. Food Chem. 2012, 133, 21–28. [Google Scholar] [CrossRef]
- Bianco, A.; Ramunno, A.; Serrilli, A.M.; Lo Castro, M.; Ballero, M.; Serafini, M. Phytochemical characters of Teucrium marum from Sardinia: An endemic plant. Nat. Prod. Res. 2004, 18, 557–564. [Google Scholar] [CrossRef]
- Pacifico, S.; D’Abrosca, B.; Scognamiglio, M.; D’Angelo, G.; Gallicchio, M.; Galasso, S.; Monaco, P.; Fiorentino, A. NMR-based metabolic profiling and in vitro antioxidant and hepatotoxic assessment of partially purified fractions from Golden germander (Teucrium polium L.) methanolic extract. Food Chem. 2012, 135, 1957–1967. [Google Scholar] [CrossRef]
- Sharififar, F.; Dehghn-Nudeh, G.; Mirtajaldini, M. Major flavonoids with antioxidant activity from Teucrium polium L. Food Chem. 2009, 112, 885–888. [Google Scholar] [CrossRef]
- Harborne, J.B.; Tomás-Barberán, F.A.; Williams, C.A.; Gil, M.I. A chemotaxonomic study of flavonoids from European Teucrium species. Phytochemistry 1986, 25, 2811–2816. [Google Scholar] [CrossRef]
- Bahramikia, S.; Yazdanparast, R. Phytochemistry and medicinal properties of Teucrium polium L. (Lamiaceae). Phytother. Res. 2012, 26, 1581–1593. [Google Scholar] [CrossRef] [PubMed]
- Krache, I.; Boussoualim, N.; Ouhida, S.; Amraoui, N.; Baghiani, A.; Arrar, L. Acute and chronic effects of methanolic extract of Teucrium polium on blood parameters and histopathology of liver and kidney in female rats. Asian J. Res. Med. Pharm. Sci. 2017, 2, 1–11. [Google Scholar] [CrossRef]
- Khoshnood-Mansoorkhani, M.J.; Moein, M.R.; Oveisi, N. Anticonvulsant activity of Teucrium polium against seizure induced by PTZ and MES in mice. Iran. J. Pharm. Res. 2010, 9, 395–401. [Google Scholar] [PubMed]
- Niazmand, S.; Esparham, M.; Hassannia, T.; Derakhshan, M. Cardiovascular effects of Teucrium polium L. extract in rabbit. Pharm. Mag. 2011, 7, 260–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzeer, J.; Vummidi, B.R.; Arafeh, R.; Rimawi, W.; Saleem, H.; Luedtke, N.W. The influence of extraction solvents on the anticancer activities of Palestinian medicinal plants. J. Med. Plants Res. 2014, 8, 408–415. [Google Scholar]
- Ben Othman, M.; Bel Hadj Salah-Fatnassi, K.; Ncibi, S.; Elaissi, A.; Zourgui, L. Antimicrobial activity of essential oil and aqueous and ethanol extracts of Teucrium polium L. subsp. gabesianum (L.H.) from Tunisia. Physiol. Mol. Biol. Plants 2017, 23, 723–729. [Google Scholar] [CrossRef]
- Nematollahi-Mahani, S.N.; Rezazadeh-Kermani, M.; Mehrabani, M.; Nakhaee, N. Cytotoxic Effects of Teucrium polium on Some Established Cell Lines. Pharm. Biol. 2007, 45, 295–298. [Google Scholar] [CrossRef]
- Elmasri, W.A.; Hegazy, M.E.F.; Mechrefa, Y.; Paré, W.P. Cytotoxic saponin poliusaposide from Teucrium polium. R.S.C. 2015, 5, 27126–27133. [Google Scholar] [CrossRef]
- Nagao, Y.; Ito, N.; Kohno, T.; Kuroda, H.; Fujita, E. Antitumor activity of Rabdosia and Teucrium diterpenoids against P388 lymphocytic leukemia in mice. Chem. Pharm. Bull. (Tokyo) 1982, 30, 727–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mseddi, K.; Alimi, F.; Noumi, N.; Deshpande, S.; Adnan, M.; Hamdi, A.; Elkahoui, S.; Alghamdi, A.; Kadri, A.; Patel, P.; et al. Thymus musilii Velen. as a promising source of potent bioactive compounds with its pharmacological properties: In Vitro and in silico analysis. Arab. J. Chem. 2020, 13, 6782–6801. [Google Scholar] [CrossRef]
- Jurisic, R.V.K.S.; Kalodera, Z.; Grgic, J. Determination of selenium in Teucrium generation atomic absorption spectrometry. Z. Nat. 2003, 58, 143–145. [Google Scholar]
- Autore, G.; Capasso, F.; De Fusco, R.; Fasulo, M.P.; Lembo, M. Antipyretic and antibacterial actions of Teucrium polium (L.). Pharm. Res. Commun. 1984, 16, 21. [Google Scholar]
- Ghojavand, S.; Madani, M.; Karimi, J. Green synthesis, characterization and antifungal activity of silver nanoparticles using stems and flowers of Felty Germander. J. Inorg. Organomet. Polym. Mater. 2020. [CrossRef]
- Rabe, T.; Staden, J.V. Antibacterial activity of South African plants used for medicinal purposes. J. Ethnopharmacol. 1997, 56, 81–87. [Google Scholar] [CrossRef]
- Kuete, V.; Nguemeving, J.R.; Beng, V.P.; Azebaze, A.G.B.; Etoa, F.X. Antimicrobial activity of the methanolic extracts and compounds from Vismia laurentii De Wild (Guttiferae). J. Ethnopharmacol. 2007, 109, 372–379. [Google Scholar] [CrossRef]
- Darabpour, E.; Motamedi, H.; Nejad, S.M.S. Antimicrobial properties of Teucrium polium against some clinical pathogens. Asian Pac. J. Trop. Med. 2010, 3, 124–127. [Google Scholar] [CrossRef] [Green Version]
- Khaled-Khodja, N.; Boulekbache-Makhlouf, L.; Madani, K. Phytochemical screening of antioxidant and antibacterial activities of methanolic extracts of some Lamiaceae. Ind. Crop. Prod. 2014, 61, 41–48. [Google Scholar] [CrossRef]
- Mosadegh, M.; Sharifabadi, D.A.; Nasiri, P.; Esmaeili, S.; Naghibi, F. The study of phytochemical, antifungal and antibacterial effects of Teucrium polium and Cichourium intybus. Sci. J. Kurdistan Univ. Med. Sci. 2002, 7, 1–6. [Google Scholar]
- Tabatabaei, Y.F.; Alizadeh, B.B.; Heidari, S.M.; Mortazavi, S. The in vitro study of antimicrobial effect of Teucrium polium extract on infectious microorganisms. Sci. J. Hamadan Univ. Med. Sci. 2014, 21, 16–24. [Google Scholar]
- Essawi, T.; Srour, M. Screening of some Palestinian medicinal plants for antibacterial activity. J. Ethnopharmacol. 2000, 70, 343–349. [Google Scholar] [CrossRef]
- Nikaido, H. Outer membrane. In Escherichia coli and Salmonella: Cellular and Molecular Biology; Neidhardt, F.C., Ed.; ASM Press: Washington, DC, USA, 1996; pp. 29–47. [Google Scholar]
- Rajeshwar, Y.; Gupta, M.; Mazumder, U.K. In vitro lipid peroxidation and antimicrobial activity of Mucuna pruriens seeds. Iranian J. Pharm. Ther. 2005, 4, 32–35. [Google Scholar]
- Stanković, M.S.; Stefanović, O.; Čomić, L.; Topuzović, M.; Radojević, I. Antimicrobial activity, total phenolic content and flavonoid concentrations of Teucrium species. Cent. Eur. J. Biol. 2012, 7, 664–671. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.G.; Hah, D.S.; Kim, C.H.; Kim, Y.H.; Kim, E. Evaluation of antimicrobial activity of the methanol extracts from 8 traditional medicinal plants. Chang. Toxicol. Res. 2011, 27, 31–36. [Google Scholar] [CrossRef]
- Fabry, W.; Okemo, P.O.; Ansorg, R. Antibacterial activity of East African medicinal plants. J. Ethnopharmacol. 1998, 60, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, S. Anti-staphylococcal plant natural products. Nat. Prod. Rep. 2004, 21, 263–277. [Google Scholar] [CrossRef]
- Rios, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Forbes, B.A.; Suhm, D.F.; Wissfeld, A.S. Baily and Scott’s Diagnostic Microbiology, 10th ed.; Mobsy Inc.: London, UK, 1998. [Google Scholar]
- Ilhami, G.; Metin, U.; Munir, O.; Suktru, B.; Irfan, K. Antioxidant and antimicrobial activities of Teucrium polium L. J. Food Technol. 2003, 1, 9–16. [Google Scholar]
- Sarac, N.; Ugur, A. Antimicrobial activities and usage in folkloric medicine of some Lamiaceae species growing in Mugla, Turkey. Eur. Asian. J. Biosci. 2007, 4, 28–37. [Google Scholar]
- Kremer, D.; Kosir, I.J.; Kosalec, I.; Koncic, M.Z.; Potocnik, T. Investigation of chemical compounds, antioxidant and antimicrobial properties of Teucrium arduini L. (lamiaceae). Curr. Drug Targets. 2013, 14, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Taheri, A.A.; Gholampour azizi, I.; Hashemi Karoui, M.; Farhadi, L.; Servatyari, K. Inhibitory effect of aquatic and alcoholic extracts of Artemisia sieberi on growth of Candida albicans: An in vitro study. Qom. Univ. Med. Sci. J. 2018, 12, 39–47. [Google Scholar] [CrossRef]
- Gholampour-Azizi, I.; Rouhi, S.; Yahyayi, F. In vitro antifungal activity of Cucumis melo on Candida albicans. Zahedan J. Res. Med. Sci. 2015, 17, 35–39. [Google Scholar] [CrossRef]
- Nadimi, M.; Zia, M.; Madani, M. The effect of aqueous and ethanolic extracts of Teucrium polium on Candida albicans and two species of Malassezia. Zahedan J. Res. Med. Sci. 2013, 15, 34–38. [Google Scholar]
- Akbarzdeh, M.; Bonyadpour, B.; Pakshir, K.; Mohagheghzadeh, A.A. Comparative investigation of the sensitivity of Candida fungi isolated from vulvovaginal candidiasis to nystatin and Teucrium polium smoke product. Int. J. Women’s Health Reprod. Sci. 2019, 7, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Alwan, A.H.; Abdul-Latif, M.; Jawad, A.; Albana, S.; Ali, K.F. Antiviral activity of some Iraqi indigenous plants. Pharm. Biol. 1988, 26, 107–111. [Google Scholar] [CrossRef]
- Ansari, M.; Sharififar, F.; Arabzadeh, A.M.; Mehni, F.; Mirtadzadini, M. In vitro evaluation of anti-herpes simplex-1 activity of three standardized medicinal plants from Lamiaceae. Anc. Sci. Life 2014, 4, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Swarup, V.; Ghosh, J.; Ghosh, S.; Saxena, A.; Basu, A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob. Agents Chemother. 2007, 51, 3367–3370. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; Coppola, R. Quorum Sensing and Phytochemicals. Int. J. Mol. Sci. 2013, 14, 12607–12619. [Google Scholar] [CrossRef] [Green Version]
- Snoussi, M.; Noumi, E.; Punchappady-Devasya, R.; Trabelsi, N.; Kanekar, S. Antioxidant properties and anti-quorum sensing potential of Carum copticum essential oil and phenolics against Chromobacterium violaceum. J. Food Sci. Technol. 2018, 55, 2824–2832. [Google Scholar] [CrossRef]
- Noumi, E.; Merghni, A.; Alreshidi, M.M.; Haddad, O.; Akmadar, G. Chromobacterium violaceum and Pseudomonas aeruginosa PAO1: Models for evaluating anti-quorum sensing activity of Melaleuca alternifolia essential oil and its main component Terpinen-4-ol. Molecules 2018, 23, 2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noumi, E.; Snoussi, M.; Merghni, A.; Nazzaro, F.; Quindós, G. Phytochemical composition, anti-biofilm and anti-quorum sensing potential of fruit, stem and leaves of Salvadora persica L. methanolic extracts. Microb. Pathog. 2017, 109, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, K.; Das, R.K. A review on quorum sensing inhibitors. Int. J. Pharm. Sci. 2019, 10, 5224–5233. [Google Scholar]
- Al-Haidari, R.A.; Shaaban, M.I.; Ibrahim, S.R.M.; Mohamed, G.A. Anti-quorum sensing activity of some medicinal plants. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 67–71. [Google Scholar] [PubMed]
- Mashhady, M.A.; Abkhoo, J.; Jahani, S.; Abyar, S.; Khosravani, F. Inhibitory Effects of Plant extracts on Pseudomonas aeruginosa biofilm formation. Int. J. Infect. 2016, 3, e38199. [Google Scholar] [CrossRef]
- Elmasri, W.A.; Hegazy, M.E.-F.; Aziz, M.; Koksal, E.; Amor, W. Biofilm blocking sesquiterpenes from Teucrium polium. J. Phytochem. 2014, 103, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Luís, Â.; Duarte, A.; Gominho, J.; Domingues, F.; Duarte, A.P. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind. Crop. Prod. 2016, 79, 274–282. [Google Scholar] [CrossRef]
- Rahmouni, F.; Badraoui, R.; Amri, N.; Elleuch, A.; ElFeki, A. Hepatotoxicity and nephrotoxicity in rats induced by carbon tetrachloride and the protective effects of Teucrium polium and vitamin C. Toxicol. Mech. Methods 2019. [Google Scholar] [CrossRef]
- Adnan, M.; Patel, M.; Deshpande, S.; Alreshidi, M.; Siddiqui, A.J.; Reddy, M.N.; Noumi, E.; De Feo, V. Effect of Adiantum philippense extract on biofilm formation, adhesion with its antibacterial activities against foodborne pathogens, and characterization of bioactive metabolites: An in vitro-in silico approach. Front. Microbiol. 2020. [Google Scholar] [CrossRef]
- Snoussi, M.; Trabelsi, N.; Dehmeni, A.; Benzekri, R.; Bouslama, L. Phytochemical analysis, antimicrobial and antioxidant activities of Allium roseum var. odoratissimum (Desf.) Coss extracts. Ind. Crop. Prod. 2016, 89, 533–542. [Google Scholar] [CrossRef]
- Parveen, M.; Ghalib, R.M.; Khanam, Z.; Mehdi, S.H.; Ali, M. A Novel antimicrobial agent from the leaves of Peltophorum vogelianum (Benth.). Nat. Prod. Res. 2010, 24, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- Snoussi, M.; Dehmani, A.; Noumi, E.; Flamini, G.; Papetti, A. Chemical composition and antibiofilm activity of Petroselinum crispum and Ocimum basilicum essential oils against Vibrio spp. strains. Microb. Pathog. 2016, 90, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Gatsing, D.; Tchakoute, V.; Ngamga, D.; Kuiate, J.R.; Tamokou, J.D.D.; Nji-Nkah, B.F.; Tchouanguep, F.M.; Fodouop, S.P.C. In vitro antibacterial activity of Crinum purpurascens Herb. leaf extract against the Salmonella species causing typhoid fever and its toxicological evaluation. Iran. J. Med. Sci. 2009, 34, 126–136. [Google Scholar]
- Zaki, A.A.; Shaaban, M.I.; Hashish, N.E.; Amer, M.A.; Lahloub, M.F. Assessment of anti-quorum sensing activity for some ornamental and medicinal plants native to Egypt. Sci. Pharm. 2013, 81, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N° | RT | Identified Compound Name | Chemical Class | Chemical Formula |
---|---|---|---|---|
1 | 0.945 | 10-Hydroxyloganin | Isoprenoid | C17H26O11 |
2 | 1.046 | 13R-hydroxy-9E,11Z octadecadienoic acid | Octadecanoid | C18H32O3 |
3 | 1.062 | Bis (2-hydroxypropyl) amine | Amino alcohol | C6H15NO2 |
4 | 1.447 | 9-amino-nonanoic acid | Amino fatty acid | C9H19NO2 |
5 | 3.807 | 10-Amino-decanoic acid | Amino fatty acid | C10H21NO2 |
6 | 4.739 | 7-Epiloganin tetraacetate | Isoprenoid | C25H34O14 |
7 | 5.342 | b-D-Glucopyranoside uronic acid, 6-(3-oxobutyl)- 2-naphthalenyl | Organic acid, Phenol | C20H22O8 |
8 | 5.948 | Cepharanthine | Alkaloid | C37H38N2O6 |
9 | 5.96 | Troxerutin | Flavonol | C27H30O14 |
10 | 6.319 | Deoxyloganin tetraacetate | Isoprenoid | C29H28O7 |
11 | 6.329 | CMP-N-acetylneuraminic acid | Amino sugar | C33H42O19 |
12 | 6.376 | Rhoifolin | Flavonoid | C25H34O13 |
13 | 7.838 | Sericetin diacetate | Flavonol | C20H31N4O16P |
14 | 8.198 | Carapin-8 (9)-Ene | Limonoid | C27H30O7 |
15 | 8.848 | Selinidin | Coumarin derivative | C19H20O5 |
16 | 9.1 | Harpagoside | Iridoid glycoside | C24H30O11 |
17 | 9.126 | 8-Epiiridodial glucoside tetraacetate | Isoprenoid | C24H34O11 |
18 | 9.262 | Larixol Acetate | Bicyclic labdane diterpenes | C22H36O3 |
19 | 9.525 | Valtratum | Terpene | C22H30O8 |
20 | 9.807 | Triptonide | Diterpene triepoxide | C20H22O6 |
21 | 10.036 | Koparin 2′-Methyl Ether | Isoflavonoid | C17H14O6 |
22 | 10.779 | Dihydrosamidin | Coumarins | C21H24O7 |
23 | 11.022 | 10S,11R-Epoxy-punaglandin 4 | Eicosanoid | C25H35ClO9 |
24 | 11.279 | 16alpha,17beta-Estriol 3-(beta-D- glucuronide) | Steroidal glycosides | C24H32O9 |
25 | 11.28 | 16-Hydroxy-4-carboxyretinoic Acid | Isoprenoid | C20H24O5 |
26 | 12.149 | Isotectorigenin, 7- Methyl ether | Isoflavonoid | C18H16O6 |
27 | 13.274 | 3-hydroxy-3′,4′- Dimethoxyflavone | Flavonoid | C17H14O5 |
28 | 18.427 | Khayanthone | Limonoid | C32H42O9 |
29 | 20.37 | 1-dodecanoyl-sn-glycerol | Glycerolipid | C14H22N2O3 |
Code | Strains/Origin | T. polium Methanolic Extract | Ampicillin | |||
---|---|---|---|---|---|---|
Mean ± SD * (mm) | MIC a | MBC b | MBC/MIC Ratio | Mean ± SD (mm) | ||
B1 | Escherichia coli ATCC 35218 | 7.00 ± 0.00 a | 6.25 | >100 | >16 | 7.00 ± 0.00 a |
B2 | Pseudomonas aeruginosa ATCC 27853 | 12.33 ± 0.57 b | 12.5 | >100 | >8 | 7.33 ± 0.57 a |
B3 | Proteus mirabilis ATCC 29245 | 11.66 ± 0.57 b | 6.25 | >100 | >16 | 6.33 ± 0.57 a |
B4 | Klebsiella pneumoniae ATCC 27736 | 7.00 ± 0.00 a | 12.5 | >100 | >8 | 6.66 ± 0.57 a |
B5 | Proteus mirabilis (environmental strain, 3) | 6.00 ± 0.00 a | 6.25 | >100 | >16 | 21.00 ± 1.00 d |
B6 | Staphylococcus sciuri (environmental strain, 4) | 6.00 ± 0.00 a | 12.5 | >100 | >8 | 7.00 ± 0.00 a |
B7 | Streptococcus pyogens (clinical strain) | 16.66 ± 1.15 d | 6.25 | 50 | >16 | 16.00 ± 1.73 c |
B8 | Pseudomonas aeruginosa (environmental strain) pf8) | 12.00 ± 0.00 b | 6.25 | >100 | >16 | 6.66 ± 0.57 a |
B9 | Staphylococcus aureus MDR (clinical strain, 136) | 7.00 ± 0.00 a | 12.5 | 100 | >8 | 7.33 ± 0.57 a |
B10 | Enterobacter cloacae (clinical strain, 115) | 14.33 ± 0.57 c | 25 | 100 | 4 | 6.66 ± 0.57 a |
B11 | Sphingomonas paucimobilis (clinical strain, 144) | 7.00 ± 0.00 a | 12.5 | >100 | >8 | 7.66 ± 0.57 a |
B12 | Acinetobacter baumannii (clinical strain, 146) | 19.33 ± 1.15 e | 12.5 | >100 | >8 | 13.33 ± 0.57 b |
Code | Strain | T. polium Methanolic Extract | Amphotericin B | |||
---|---|---|---|---|---|---|
Mean ± SD * (mm) | MIC a | MFC b | MFC/MIC Ratio | Mean ± SD (mm) | ||
Y1 | Candida albicans ATCC 10231 | 7.00 ± 0.00 b | 12.5 | 50 | 2 | 22.66 ± 1.15 d |
Y2 | Cryptococcus neoformans ATCC 14116 | 7.00 ± 0.00 b | 6.25 | 12.5 | 2 | 15.33 ± 0.57 c |
Y3 | Candida vaginalis (Clinical strain, 136) | 10.33 ± 0.57 c | 12.5 | 50 | 2 | 6.66 ± 0.57 a |
Y4 | Candida albicans (Clinical strain, 139) | 7.00 ± 0.00 a | 25 | 100 | 4 | 12.33 ± 0.57 b |
M1 | Aspergillus fumigatus ATCC 204305 | 6.00 ± 0.00 a | (-) | (-) | (-) | 15.00 ± 1.00 c |
M2 | Aspergillus niger | 6.00 ± 0.00 a | (-) | (-) | (-) | 6.00 ± 0.00 a |
Sample | Swarming Inhibition (%) | Swimming Inhibition (%) | ||||
---|---|---|---|---|---|---|
100 | 75 | 50 | 100 | 75 | 50 | |
T. polium methanolic extract | 23.66 ± 0.5 | 12.95 ± 1.5 | - | 35.25 ± 2.5 | - | - |
Concentration is expressed as µg/mL; (-): No activity; %: Percentage. |
Teucrium Species/Origin | Solvent Used | Main Identified Compounds | References |
---|---|---|---|
T. polium L. Serbia | Methanol | Phenolic acids (×10−4 µg/mL extract µg/mL extract):gallic acid (8.1 ± 0.2), vanillic acid (2.1 ± 0.3), caffeic acid (1.7 ± 0.2), chlorogenic acid (90.00 ± 0.2), and p-coumaric acid (30.0 ± 0.6). Flavonoids (×10−4 µg/mL extract µg/mL extract):catechin (235.0 ± 0.5), rutin (77.0 ± 0.1), myricetin (55.0 ± 0.1), luteolin (22.0 ± 0.6), quercetin (24.0 ± 0.4), and apigenin (157.0 ± 0.3). | [35] |
T. polium L. Greece | Methanol/Water 62.5% | Phenolic compounds (mg/100g dry sample): tyrosol (0.42 ± 0.01), caffeic acid (0.65 ± 0.01), ferulic acid (0.95 ± 0.02), and luteolin (0.48 ± 0.01) | [36] |
o-Hydroxybenzoic acid, hydroxytyrosol, p-Hydroxybenzoic acid, vanillic acid, gentisic acid, ferulic acid, caffeic acid, 3-Nitro-phthalic acid, and quercetin. | |||
T. polium L. Egypt | Dichloromethane–methanol (1:1; v/v) | (1R,4S,10R) 10,11-dimethyl-dicyclohex-5 (6)-en-1,4-diol-7-one and (R)-mandelonitrile-b-laminaribioside. | [37] |
T. polium L Italy | Methanol | Poliumoside B, poliumoside, teucardosid, 8-O-acetylharpagid, luteolin7-O-rutinoside, luteolin7-O-neohesperidoside, luteolin7-O-glucosied, luteolin 4′-O-glucoside, teulamifin, and teusalvin C. | [38] |
T. polium L. R. Macedonia | Methanol | Hydroxycinnamic acid derivatives (2 compounds), phenylethanoid glycosides (12 compounds), flavonoid glycosides (11 compounds) and flavonoid aglycones (6 compounds). | [40] |
T. polium L. Italy | Methanol | Poliumoside, apigenin, luteolin, montanin D, montanin E, teubutilin A, teuchamecrin C, teulamifin B, teupolin VI, teupolin VII, teupolin VIII, teupolin IX, teupolin X, teupolin XI, and teupolin XII. | [42] |
T. polium L. Iran | Methanol | Rutin, apigenin, (3′, 6 dimethoxy apigenin, and 4′,7 dimethoxy apigenin. | [43] |
T. polium L. Europe | Ethanol 70% | Rutin, apigenin, apigenin-4, 7-dimethylether, cirsimaritin, cirsiliol, luteolin, 6-hydroxyluteolin, luteolin-7-O-glucoside, salvigenin, apigenin 7-glucoside, eupatorin, apigenin-5 galloylglucoside, 3′,6- dimethoxy apigenin, 4′,7-dimethoxy apigenin, and salvigenin. | [44] |
T. polium L. Egypt | Dichloromethane–methanol (1:1; v/v) | Sesquiterpenes: 4β,5α-epoxy-7αH-germacr-10(14)-en-6β-ol-1-one, 4β,5α-epoxy-7αH-germacr-10(14)-en,1β-hydroperoxyl,6β-ol, 4β,5β-epoxy-7αH-germacr-10(14)-en,1β-hydroperoxyl,6β-ol 4α,5β-epoxy-7αH-germacr-10(14)-en,1β-hydroperoxyl,6α-ol, 10a,1b;4b,5a-diepoxy-7aH-germacrm-6-ol, teucladiol, 4b,6b-dihydroxy-1a,5b(H)-guai-9-ene, oplopanone, oxyphyllenodiol A, eudesm-3-ene-1,6-diol, rel1b,3a,6b-trihydroxyeudesm-4-ene, arteincultone. Flavonoids: 7,40 -O-dimethylscutellar-ein(5,6-dihydroxy-7,40 -dimethoxyflavone) and salvigenin. Glycosides: teucardoside and poliumoside. | [90] |
T. polium L. Saudi Arabia | Methanol | Larixol acetate, cepharanthine, Bis (2-hydroxypropyl) amine, 9-amino-nonanoic acid, 10-amino-decanoic acid, CMP-N-acetylneuraminic acid, selinidin, dihydrosamidin, triptonide, 10S,11R-Epoxy-punaglandin 4, rhoifolin, 3-hydroxy-3′,4′- dimethoxyflavone, sericetin diacetate, troxerutin, 1-dodecanoyl-sn-glycerol, harpagoside, koparin 2′-methyl ether, isotectorigenin, 7-methyl ether, 10-hydroxyloganin, 7-epiloganin tetraacetate, deoxyloganin tetraacetate, 8-epiiridodial glucoside tetraacetate, 16-hydroxy-4-carboxyretinoic acid, carapin-8 (9)-ene, khayanthone, 13R-hydroxy-9E,11Z octadecadienoic acid, b-D-glucopyranoside uronic acid, 6-(3-oxobutyl)-2-naphthalenyl, 16alpha,17beta-Estriol 3-(beta-D-glucuronide), and valtratum. | This Study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alreshidi, M.; Noumi, E.; Bouslama, L.; Ceylan, O.; Veettil, V.N.; Adnan, M.; Danciu, C.; Elkahoui, S.; Badraoui, R.; Al-Motair, K.A.; et al. Phytochemical Screening, Antibacterial, Antifungal, Antiviral, Cytotoxic, and Anti-Quorum-Sensing Properties of Teucrium polium L. Aerial Parts Methanolic Extract. Plants 2020, 9, 1418. https://doi.org/10.3390/plants9111418
Alreshidi M, Noumi E, Bouslama L, Ceylan O, Veettil VN, Adnan M, Danciu C, Elkahoui S, Badraoui R, Al-Motair KA, et al. Phytochemical Screening, Antibacterial, Antifungal, Antiviral, Cytotoxic, and Anti-Quorum-Sensing Properties of Teucrium polium L. Aerial Parts Methanolic Extract. Plants. 2020; 9(11):1418. https://doi.org/10.3390/plants9111418
Chicago/Turabian StyleAlreshidi, Mousa, Emira Noumi, Lamjed Bouslama, Ozgur Ceylan, Vajid N. Veettil, Mohd Adnan, Corina Danciu, Salem Elkahoui, Riadh Badraoui, Khalid A. Al-Motair, and et al. 2020. "Phytochemical Screening, Antibacterial, Antifungal, Antiviral, Cytotoxic, and Anti-Quorum-Sensing Properties of Teucrium polium L. Aerial Parts Methanolic Extract" Plants 9, no. 11: 1418. https://doi.org/10.3390/plants9111418
APA StyleAlreshidi, M., Noumi, E., Bouslama, L., Ceylan, O., Veettil, V. N., Adnan, M., Danciu, C., Elkahoui, S., Badraoui, R., Al-Motair, K. A., Patel, M., De Feo, V., & Snoussi, M. (2020). Phytochemical Screening, Antibacterial, Antifungal, Antiviral, Cytotoxic, and Anti-Quorum-Sensing Properties of Teucrium polium L. Aerial Parts Methanolic Extract. Plants, 9(11), 1418. https://doi.org/10.3390/plants9111418