Maturation and Conversion of Somatic Embryos Derived from Seeds of Olive (Olea europaea L.) cv. Dahbia: Occurrence of Secondary Embryogenesis and Adventitious Bud Formation
Abstract
:1. Introduction
2. Results
2.1. Somatic Embryo Maturation
2.2. Somatic Embryo Conversion into Plantlets
2.2.1. Effects of PGRs
2.2.2. Effects of Light Conditions
2.2.3. Effects of Sucrose and Mannitol Pretreatments
2.3. Plantlet Acclimatization
3. Discussion
4. Materials and Methods
4.1. Plant Material and Establishment of Embryogenic Cultures
4.2. Somatic Embryo Maturation
4.3. Somatic Embryo Conversion into Plantlets
4.3.1. Effects of PGRs
4.3.2. Effects of Light Conditions
4.3.3. Effects of Sucrose and Mannitol Pretreatments
4.4. Plantlet Acclimatization
4.5. Data Collection
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lim, T.K. Olea europaea. In Edible Medicinal and Non-Medicinal Plants; Lim, T.K., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 82–105. [Google Scholar]
- Rallo, L.; Barranco, D.; Díez, C.M.; Rallo, P.; Suárez, M.P.; Trapero, C.; Pliego-Alfaro, F. Strategies for olive (Olea europaea L.) breeding: Cultivated genetic resources and crossbreeding. In Advances in Plant Breeding Strategies: Fruits; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Cham, Switzerland, 2018; pp. 535–600. [Google Scholar]
- Lara-Ortega, F.J.; Beneito-Cambra, M.; Robles-Molina, J.; García-Reyes, J.F.; Gilbert-López, B.; Molina-Díaz, A. Direct olive oil analysis by mass spectrometry: A comparison of different ambient ionization methods. Talanta 2018, 180, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Haq, I.U.; Ahmad, T.; Hafiz, I.A.; Abbasi, N.A. Influence of microcutting sizes and IBA concentrations on in vitro rooting of olive cv. ‘Dolce Agogia’. Pak. J. Bot. 2009, 41, 1213–1222. [Google Scholar]
- Sánchez-Romero, C. Olive Olea europaea L. In Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants; Jain, S.M., Gupta, P., Eds.; Springer: Cham, Switzerland, 2018; pp. 25–38. [Google Scholar]
- Jain, M.S.; Gupta, P. Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Rugini, E.; Cristofori, V.; Silvestri, C. Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods. Biotechnol. Adv. 2016, 34, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.-X.; Shang, G.-D.; Wu, L.-Y.; Xu, Z.-G.; Zhao, X.-Y.; Wang, J.-W. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev. Cell 2020. [Google Scholar] [CrossRef] [PubMed]
- Rugini, E. Somatic embryogenesis and plant regeneration in olive (Olea europaea L.). Plant Cell Tissue Organ Cult. 1988, 14, 207–214. [Google Scholar] [CrossRef]
- Brhadda, N.; Abousalim, A.; Loudyi, D.E.W. Effets du milieu de culture et de la lumière sur l’embryogenèse somatique de l’olivier (Olea europaea L.) cv. Picholine marocaine. Fruits 2003, 58, 167–174. [Google Scholar] [CrossRef]
- Brhadda, N.; Loudyi, D.E.W.; Abousalim, A. Effet du sucre sur l’embryogenèse somatique de l’olivier (Olea europaea L.) cv. Picholine marocaine. Biotechnol. Agron. Soc. Environ. 2008, 12, 245–250. [Google Scholar]
- Trabelsi, E.B.; Bouzid, S.; Bouzid, M.; Elloumi, N.; Belfeleh, Z.; Benabdallah, A.; Ghezel, R. In-vitro regeneration of olive tree by somatic embryogenesis. J. Plant Biol. 2003, 46, 173–180. [Google Scholar] [CrossRef]
- Capelo, A.M.; Silva, S.; Brito, G.; Santos, C. Somatic embryogenesis induction in leaves and petioles of a mature wild olive. Plant Cell Tissue Organ Cult. 2010, 103, 237–242. [Google Scholar] [CrossRef]
- Rugini, E.; Silvestri, C. Somatic embryogenesis in olive (Olea europaea L. subsp. Europaea var. sativa and var. sylvestris). In In Vitro Embryogenesis in Higher Plants, Methods in Molecular Biology; Germana, M.A., Lambardi, M., Eds.; Springer: New York, NY, USA, 2016; pp. 341–349. [Google Scholar]
- Sánchez-Romero, C. Somatic embryogenesis in Olea spp. Plant Cell Tissue Organ Cult. 2019, 138, 403–426. [Google Scholar] [CrossRef]
- Rugini, E.; Caricato, G. Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) “Canino” and “Moraiolo”. Plant Cell Rep. 1995, 14, 257–260. [Google Scholar] [CrossRef]
- Mazri, M.A.; Belkoura, I.; Pliego-Alfaro, F.; Belkoura, M. Somatic embryogenesis from leaf and petiole explants of the Moroccan olive cultivar Dahbia. Sci. Hortic. 2013, 159, 88–95. [Google Scholar] [CrossRef]
- Toufik, I.; Guenoun, F.; Belkoura, I. Embryogenesis expression from somatic explants of olive (Olea europaea L.) cv. Picual. Moroc. J. Biol. 2014, 11, 17–25. [Google Scholar]
- Oulbi, S.; Belkoura, I.; Loutfi, K. Somatic embryogenesis from somatic explants of a Moroccan olive (Olea europaea L.) cultivar, ‘Moroccan Picholine’. Acta Hortic. 2018, 1199, 91–96. [Google Scholar] [CrossRef]
- Mazri, M.A.; Belkoura, I.; Pliego-Alfaro, F.; Belkoura, M. Embryogenic capacity of embryo-derived explants from different olive cultivars. Acta Hortic. 2012, 929, 397–403. [Google Scholar] [CrossRef]
- Bradaï, F.; Almagro-Bastante, J.; Sánchez-Romero, C. Cryopreservation of olive somatic embryos using the droplet-vitrifcation method: The importance of explant culture conditions. Sci. Hortic. 2017, 218, 14–22. [Google Scholar] [CrossRef]
- Cerezo, S.; Mercado, J.A.; Pliego-Alfaro, F. An efficient regeneration system via somatic embryogenesis in olive. Plant Cell Tissue Organ Cult. 2011, 106, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Barranco, G.; Torreblanca, R.; Padilla, I.M.G.; Sánchez-Romero, C.; Pliego-Alfaro, F.; Mercado, J.A. Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection. II. Transient transformation via particle bombardment. Plant Cell Tissue Organ Cult. 2009, 97, 243–251. [Google Scholar] [CrossRef]
- Lynch, P.T.; Siddika, A.; Johnston, J.W.; Trigwell, S.M.; Mehra, A.; Benelli, C.; Lambardi, M.; Benson, E.E. Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci. 2011, 181, 47–56. [Google Scholar] [CrossRef]
- Narváez, I.; Khayreddine, T.; Pliego, C.; Cerezo, S.; Jiménez-Díaz, R.M.; Trapero-Casas, J.L.; López-Herrera, C.; Arjona-Girona, I.; Martín, C.; Mercado, J.A.; et al. Usage of the heterologous expression of the antimicrobial gene afp from Aspergillus giganteus for Increasing fungal resistance in olive. Front. Plant Sci. 2018, 9, 680. [Google Scholar] [CrossRef]
- Narváez, I.; Prieto-Pliego, C.; Palomo-Ríos, E.; Fresta, L.; Jiménez-Díaz, R.; Trapero-Casas, J.; López-Herrera, C.; Arjona-López, J.; Mercado, J.; Pliego-Alfaro, F. Heterologous expression of the AtNPR1 gene in olive and its effects on fungal tolerance. Front. Plant Sci. 2020, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, C.; Celletti, S.; Cristofori, V.; Astolfi, S.; Ruggiero, B.; Rugini, E. Olive (Olea europaea L.) plants transgenic for tobacco osmotin gene are less sensitive to in vitro-induced drought stress. Acta Physiol. Plant. 2017, 39, 229. [Google Scholar] [CrossRef]
- Trabelsi, E.B.; Naija, S.; Elloumi, N.; Belfeleh, Z.; Msellem, M.; Ghezel, R.; Bouzid, S. Somatic embryogenesis in cell suspension cultures of olive Olea europaea L. ‘Chetoui’. Acta Physiol. Plant. 2011, 33, 319–324. [Google Scholar] [CrossRef]
- Benzekri, H.; Sánchez-Romero, C. Maturation of olive somatic embryos. Acta Hortic. 2012, 961, 441–447. [Google Scholar] [CrossRef]
- Cardoso, H.; Figueiredo, A.; Serrazina, S.; Pires, R.; Peixe, A. Genome modification approaches to improve performance, quality and stress tolerance of important Mediterranean fruit species (Olea europaea L., Vitis vinifera L., and Quercus suber L.). In Advances in Plant Transgenics: Methods and Applications; Sathishkumar, R., Kumar, S.R., Hema, J., Baskar, V., Eds.; Springer: Singapore, 2019; pp. 273–312. [Google Scholar]
- Rugini, E. Somatic embryogenesis in olive (Olea europaea L.). In Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Newton, R.J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; Volume 2, pp. 171–189. [Google Scholar]
- El Khaloui, M.; Nouri, A. Procédés d’élaboration des olive de table à base des variétés Picholine Marocaine et Dahbia. Transf. Technol. Agric. 2007, 152, 1–4. [Google Scholar]
- Mazri, M.A.; Elbakkali, A.; Belkoura, M.; Belkoura, I. Embryogenic competence of calli and embryos regeneration from various explants of Dahbia cv, a Moroccan olive tree (Olea europaea L.). Afr. J. Biotechnol. 2011, 10, 19089–19095. [Google Scholar]
- Pérez-Núñez, M.T.; Chan, J.L.; Sáenz, L.; González, T.; Verdeil, J.L.; Oropeza, C. Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. In Vitro Cell. Dev. Biol. Plant 2006, 42, 37–43. [Google Scholar] [CrossRef]
- Narváez, I.; Martín, C.; Jiménez-Díaz, R.M.; Mercado, J.A.; Pliego-Alfaro, F. Plant regeneration via somatic embryogenesis in mature wild olive genotypes resistant to the defoliating pathotype of Verticillium dahliae. Front. Plant Sci. 2019, 10, 1471. [Google Scholar] [CrossRef] [PubMed]
- Ceasar, S.A.; Ignacimuthu, S. Effects of cytokinins, carbohydrates and amino acids on induction and maturation of somatic embryos in kodo millet (Paspalum scorbiculatum Linn.). Plant Cell Tissue Organ Cult. 2010, 102, 153–162. [Google Scholar] [CrossRef]
- Ghosh, A.; Igamberdiev, A.U.; Debnath, S.C. Thidiazuron-induced somatic embryogenesis and changes of antioxidant properties in tissue cultures of half-high blueberry plants. Sci. Rep. 2018, 8, 16978. [Google Scholar] [CrossRef] [Green Version]
- Gaj, M.D. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul. 2004, 43, 27–47. [Google Scholar] [CrossRef]
- Gaspar, T.; Kevers, C.; Penel, C.; Greppin, H.; Reid, D.M.; Thorpe, T.A. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell. Dev. Biol. Plant 1996, 32, 272–289. [Google Scholar] [CrossRef]
- Gaspar, T.; Kevers, C.; Faivre-Rampant, O.; Crévecoeur, M.; Penel, C.; Greppin, H.; Dommes, J. Changing concepts in plant hormone action. In Vitro Cell. Dev. Biol. Plant 2003, 39, 85–105. [Google Scholar] [CrossRef]
- Moon, H.K.; Kim, J.A.; Park, S.Y.; Kim, Y.W.; Kang, H.D. Somatic embryogenesis and plantlet formation from a rare and endangered tree species, Oplopanax elatus. J. Plant Biol. 2006, 49, 320–325. [Google Scholar] [CrossRef]
- Choi, Y.E.; Yang, D.C.; Yoon, E.S.; Choi, K.T. High-efficiency plant production via direct somatic single embryogenesis from preplasmolysed cotyledons of Panax ginseng and possible dormancy of somatic embryos. Plant Cell Rep. 1999, 18, 493–499. [Google Scholar] [CrossRef]
- Baskaran, P.; Kumari, A.; van Staden, J. Rapid propagation of Mondia whitei by embryonic cell suspension culture in vitro. S. Afr. J. Bot. 2017, 108, 281–286. [Google Scholar] [CrossRef]
- Othmani, A.; Bayoudh, C.; Drira, N.; Marrakchi, M.; Trifi, M. Somatic embryogenesis and plant regeneration in date palm Phoenix dactylifera L., cv. Boufeggous is significantly improved by fine chopping and partial desiccation of embryogenic callus. Plant Cell Tissue Organ Cult. 2009, 97, 71–79. [Google Scholar] [CrossRef]
- Pires, R.; Cardoso, H.; Ribeiro, A.; Peixe, A.; Cordeiro, A. somatic embryogenesis from mature embryos of Olea europaea L. cv. ‘Galega Vulgar’ and long-term management of calli morphogenic capacity. Plants 2020, 9, 758. [Google Scholar] [CrossRef]
- Afreen, F.; Zobayed, S.M.A.; Kozai, T. Development of photoautotrophy in Coffea somatic embryos enables mass production of clonal transplants. In Liquid Culture Systems for In Vitro Plant Propagation; Hvoslef-Eide, A.K., Preil, W., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 323–335. [Google Scholar]
- Kermode, A.R.; Dumbroff, E.B.; Bewley, J.D. The role of maturation drying in the transition from seed development to germination. J. Exp. Bot. 1989, 40, 303–313. [Google Scholar] [CrossRef]
- Cañas, L.A.; Benbadis, A. In vitro plant regeneration from cotyledon fragments of the olive tree (Olea europaea L.). Plant Sci. 1988, 54, 65–74. [Google Scholar] [CrossRef]
- Mencuccini, M.; Rugini, E. In vitro shoot regeneration from olive cultivar tissues. Plant Cell Tissue Org. Cult. 1993, 32, 283–288. [Google Scholar] [CrossRef]
- Biasi, L.A.; Falco, M.C.; Rodriguez, A.P.M.; Mendes, B.M.J. Organogenesis from internodal segments of yellow passion fruit. Sci. Agric. 2000, 57, 661–665. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S.A.; Kumar, S.; Satapathy, K.; Moharana, A.; Behera, B.; Barik, D.P.; Acharya, L.; Mohapatra, P.K.; Jena, P.K.; Naik, S.K. In vitro plant regeneration from cotyledonary nodes of Withania somnifera (L.) Dunal and assessment of clonal fidelity using RAPD and ISSR markers. Acta Physiol. Plant. 2013, 35, 195–203. [Google Scholar] [CrossRef]
- Mazri, M.A.; Meziani, R.; Elmaataoui, S.; Alfeddy, M.N.; Jait, F. Assessment of genetic fidelity, biochemical and physiological characteristics of in vitro grown date palm cv. Al-Fayda. Vegetos 2019, 32, 333–344. [Google Scholar] [CrossRef]
- Rugini, E. In vitro propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci. Hortic. 1984, 24, 123–134. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–479. [Google Scholar] [CrossRef]
Culture Medium | Size (mm) of Somatic Embryos after 3, 6 and 9 Weeks of Culture | ||
---|---|---|---|
3 Weeks | 6 Weeks | 9 Weeks | |
ECO + PGRs | 2.1 ± 0.3 b | 3.8 ± 1.3 b | 4.7 ± 0.8 b |
PGR-free ECO | 1.6 ± 0.5 a | 2.2 ± 0.4 a | 3.0 ± 0.6 a |
Half-strength OM + PGRs | 1.8 ± 0.4 ab | 3.1 ± 0.7 b | 4.2 ± 0.7 b |
PGR-free half-strength OM | 1.5 ± 0.5 a | 1.9 ± 0.3 a | 2.8 ± 0.4 a |
Culture Medium | Germination and Conversion into Plantlets (%) | Secondary Embryogenesis (%) | Adventitious Bud Formation (%) | Necrosis (%) |
---|---|---|---|---|
Half-strength OM + 0.1 mg·L−1 GA3 + 30 g·L−1 sucrose | 5 ab | 20 ab | 15 ab | 60 bc |
Half-strength OM + 0.1 mg·L−1 NAA + 30 g·L−1 sucrose | 40 bc | 30 b | 5 ab | 25 ab |
Half-strength OM + 0.1 mg·L−1 GA3 + 0.1 mg·L−1 NAA + 30 g·L−1 sucrose | 45 c | 15 ab | 35 b | 5 a |
Half-strength OM + 0.5 mg·L−1 zeatin + 30 g·L−1 sucrose | 0 a | 0 a | 15 ab | 85 c |
Half-strength OM + 1 mg·L−1 zeatin + 30 g·L−1 sucrose | 0 a | 0 a | 0 a | 100 c |
Half-strength OM + 30 g·L−1 sucrose | 0 a | 0 a | 0 a | 100 c |
One-third strength MS + 10 g·L−1 sucrose | 0 a | 0 a | 0 a | 35 ab |
Light Conditions | Germination and Conversion into Plantlets (%) | Secondary Embryogenesis (%) | Adventitious Bud Formation (%) | Necrosis (%) |
---|---|---|---|---|
16 h photoperiod | 45 a | 15 a | 35 a | 5 a |
Dark conditions | 35 a | 30 a | 5 a | 30 a |
Pretreatment Medium | Germination and Conversion into Plantlets (%) | Secondary Embryogenesis (%) | Adventitious Bud Formation (%) | Necrosis (%) |
---|---|---|---|---|
No pretreatment | 45 b | 15 a | 35 ab | 5 a |
Half-strength OM + 30 g·L−1 sucrose | 15 ab | 20 a | 50 b | 15 a |
Half-strength OM + 40 g·L−1 sucrose | 20 ab | 20 a | 50 b | 10 a |
Half-strength OM + 50 g·L−1 sucrose | 15 ab | 20 a | 50 b | 15 a |
Half-strength OM + 60 g·L−1 sucrose | 10 a | 20 a | 45 b | 25 a |
Half-strength OM + 15 g·L−1 sucrose + 15 g·L−1 mannitol | 15 ab | 20 a | 15 a | 50 b |
Half-strength OM + 20 g·L−1 sucrose + 20 g·L−1 mannitol | 20 ab | 25 a | 20 a | 35 ab |
Half-strength OM + 25 g·L−1 sucrose + 25 g·L−1 mannitol | 15 ab | 15 a | 20 a | 50 b |
Half-strength OM + 30 g·L−1 sucrose + 30 g·L−1 mannitol | 15 ab | 10 a | 20 a | 55 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazri, M.A.; Naciri, R.; Belkoura, I. Maturation and Conversion of Somatic Embryos Derived from Seeds of Olive (Olea europaea L.) cv. Dahbia: Occurrence of Secondary Embryogenesis and Adventitious Bud Formation. Plants 2020, 9, 1489. https://doi.org/10.3390/plants9111489
Mazri MA, Naciri R, Belkoura I. Maturation and Conversion of Somatic Embryos Derived from Seeds of Olive (Olea europaea L.) cv. Dahbia: Occurrence of Secondary Embryogenesis and Adventitious Bud Formation. Plants. 2020; 9(11):1489. https://doi.org/10.3390/plants9111489
Chicago/Turabian StyleMazri, Mouaad Amine, Rachida Naciri, and Ilham Belkoura. 2020. "Maturation and Conversion of Somatic Embryos Derived from Seeds of Olive (Olea europaea L.) cv. Dahbia: Occurrence of Secondary Embryogenesis and Adventitious Bud Formation" Plants 9, no. 11: 1489. https://doi.org/10.3390/plants9111489
APA StyleMazri, M. A., Naciri, R., & Belkoura, I. (2020). Maturation and Conversion of Somatic Embryos Derived from Seeds of Olive (Olea europaea L.) cv. Dahbia: Occurrence of Secondary Embryogenesis and Adventitious Bud Formation. Plants, 9(11), 1489. https://doi.org/10.3390/plants9111489