Search for New Allergens in Lolium perenne Pollen Growing under Different Air Pollution Conditions by Comparative Transcriptome Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Pollen Used in the Study
4.2. RNA Library Assembly
4.3. RNA Transcriptomics Analysis
4.4. Functional Enrichment Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sinha, M.; Singh, R.P.; Kushwaha, G.S.; Iqbal, N.; Singh, A.; Kaushik, S.; Kaur, P.; Sharma, S.; Singh, T.P. Current Overview of Allergens of Plant Pathogenesis Related Protein Families. Sci. World J. 2014, 2014, 543195. [Google Scholar] [CrossRef] [Green Version]
- D´Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 76–990. [Google Scholar] [CrossRef]
- Pawankar, R.; Canonica, G.W.; Holgate, S.T.; Lockey, R.F.; Blaiss, M. The WAO White Book on Allergy; Wisconsin World Allergy Organization: Milwaukee, WI, USA, 2013. [Google Scholar]
- Reinmuth-Selzle, K.; Kampf, C.J.; Lucas, K.; Lang-Yona, N.; Fröhlich-Nowoisky, J.; Shiraiwa, M.; Lakey, P.S.J.; Lai, S.; Liu, F.; Kunert, A.T.; et al. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. Environ. Sci. Technol. 2017, 51, 4119–4141. [Google Scholar] [CrossRef] [PubMed]
- Alfaya Arias, T.; Feo Brito, F.; García Rodríguez, C.; Pineda, F.; Lucas, J.A.; Gutierrez Mañero, F.J.; Guerra, F. Lolium perenne pollen from a polluted city shows high allergenic potency and increased associated enterobacteriaceae counts. J. Investig. Allergol. Clin. Immunol. 2014, 24, 132–134. [Google Scholar]
- Armentia, A.; Lombardero, M.; Callejo, A.; Barber, D.; Gil, F.J.M.; Martín-Santos, J.M.; Vega, J.M.; Arranz, M.L. Is Lolium pollen from an urban environment more allergenic than rural pollen? Allergol. Immunopathol. 2002, 30, 218–224. [Google Scholar] [CrossRef]
- Feo Brito, F.; Mur Gimeno, P.; Martínez, C.; Tobías, A.; Suárez, L.; Guerra, F.; Borja, J.M.; Alonso, A.M. Air pollution and seasonal asthma during the pollen season. A cohort study in Puertollano and Ciudad Real (Spain). Allergy 2007, 62, 1152–1157. [Google Scholar] [CrossRef]
- Frank, U.; Ernst, D. Effects of NO2 and Ozone on Pollen Allergenicity. Front. Plant Sci. 2016, 7, 836. [Google Scholar] [CrossRef]
- Ghiani, A.; Aina, R.; Asero, R.; Bellotto, E.; Citterio, S. Ragweed pollen collected along high-traffic roads shows a higher allergenicity than pollen sampled in vegetated areas. Allergy 2012, 67, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Mur Gimeno, P.; Feo Brito, F.; Martínez, C.; Tobías, A.; Suárez, L.; Guerra, F.; Galindo, P.A.; Gómez, E. Decompensation of pollen-induced asthma in two towns with different pollution levels in La Mancha, Spain. Clin. Exp. Allergy 2007, 37, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Sénéchal, H.; Visez, N.; Charpin, D.; Shahali, Y.; Peltre, G.; Biolley, J.P.; Lhuissier, F.; Couderc, R.; Yamada, O.; Malrat-Domenge, A.; et al. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity. Sci. World J. 2015, 2015, 940243. [Google Scholar] [CrossRef] [Green Version]
- Lucas, J.A.; Gutierrez Albanchez, E.; Alfaya, T.; Feo-Brito, F.; Gutierrez Mañero, F.J. Oxidative stress in ryegrass growing under different air pollution levels and its likely effects on pollen allergenicity. Plant Physiol. Biochem. 2019, 135, 331–340. [Google Scholar] [CrossRef]
- Emberlin, J. Grass, tree, and weed pollen. In Allergy and Allergic Diseases; Kay, A.B., Kapan, A.P., Bousquet, J., Holt, P.G., Eds.; Wiley-Blackwell: Oxford, UK, 2009; pp. 942–962. [Google Scholar]
- Hrabina, M.Ã.; Peltre, G.; Van Ree, R.; Moingeon, P.Ã. Grass pollen allergens. Clin. Exp. Allergy Rev. 2008, 3, 7–11. [Google Scholar] [CrossRef]
- Taketomi, E.A.; Sopelete, M.N.C.; de Sousa Moreira, P.F.; de Assis Machado Vieira, F. Pollen allergic disease: Pollens and its major allergens. Braz. J. Otorhinolaryngol. 2006, 72, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Lee, J.H.; Park, K.H.; Kim, K.R.; Han, M.J.; Choe, H.; Oh, J.W.; Hong, C.S. A six-year study on the changes in airborne pollen counts and skin positivity rates in Korea: 2008–2013. Yonsei Med. J. 2016, 57, 714–717. [Google Scholar] [CrossRef]
- Marsh, D.G. Allergens and the genetics of allergy. In The Antigens; Sela, M., Ed.; Academic Press: New York, NY, USA, 1975; Volume 3, pp. 271–350. [Google Scholar]
- Subiza, J. Gramíneas: Aerobiología y polinosis en España. Rev. Esp. Alergol. Inmunol. Clín. 2003, 18, 7–23. [Google Scholar]
- Kusano, H.; Li, H.; Minami, H.; Kato, Y.; Tabata, H.; Yazaki, K. Evolutionary Developments in Plant Specialized Metabolism, Exemplified by Two Transferase Families. Front. Plant Sci. 2019, 10, 683. [Google Scholar] [CrossRef]
- Breiteneder, H. Thaumatin-like proteins—A new family of pollen and fruit allergens. Allergy 2004, 59, 479–481. [Google Scholar] [CrossRef]
- Chen, M.; Xu, J.; Devis, D.; Shi, J.; Ren, K.; Searle, I.; Zhang, D. Origin and Functional Prediction of Pollen Allergens in Plants. Plant Physiol. 2016, 172, 341–357. [Google Scholar] [CrossRef] [Green Version]
- Sedghy, F.; Varasteh, A.R.; Sankian, M.; Moghadam, M. Interaction Between Air Pollutants and Pollen Grains: The Role on the Rising Trend in Allergy. Rep. Biochem. Mol. Biol. 2018, 6, 219–224. [Google Scholar]
- García-Gallardo, M.V.; Algorta, J.; Longo, N.; Espinel, S.; Aragones, A.; Lombardero, M.; Bernaola, G.; Jauregui, I.; Aranzabal, A.; Albizu, M.V.; et al. Evaluation of the effect of pollution and fungal disease on Pinus radiata pollen allergenicity. Int. Arch. Allergy Immunol. 2013, 160, 241–250. [Google Scholar] [CrossRef]
- Blanca-Lopez, N.; Campo, P.; Salas, M.; García Rodríguez, C.; Palomares, F.; Blanca, M.; Canto, G.; Feo Brito, F.; Rondon, C. Seasonal Local Allergic Rhinitis in Areas With High Concentrations of Grass Pollen. J. Investig. Allergol. Clin. Immunol. 2016, 26, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Rondón, C.; Doña, I.; López, S.; Campo, P.; Romero, J.J.; Torres, M.J.; Mayorga, C.; Blanca, M. Seasonal idiopathic rhinitis with local inflammatory response and specific IgE in absence of systemic response. Allergy 2008, 63, 1352–1358. [Google Scholar] [CrossRef]
- Rondon, C.; Fernandez, F.; Canto, G.; Blanca, M. Local allergic rhinitis: Concept, clinical manifestations, and diagnostic. J. Investig. Allergol. Clin. Immunol. 2010, 20, 364–371. [Google Scholar]
- Rondón, C.; Campo, P.; Togias, A.; Fokkens, W.J.; Durham, S.R.; Powe, D.G.; Mullol, J.; Blanca, M. Local allergic rhinitis: Concept, pathophysiology, and management. J. Allergy Clin. Immunol. 2012, 129, 1460–1467. [Google Scholar]
- Binder, R.J. Functions of heat shock proteins in pathways of the innate and adaptive immune system. J. Immunol. 2014, 193, 5765–5771. [Google Scholar] [CrossRef] [Green Version]
- Gruehn, S.; Suphioglu, C.; O’Hehir, R.E.; Volkmann, D. Molecular cloning and characterization of hazel pollen protein (70 kD) as a luminal binding protein (BiP): A novel cross-reactive plant allergen. Int. Arch. Allergy Immunol. 2003, 131, 91–100. [Google Scholar] [CrossRef]
- Henrissat, B.; Davies, G.J. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 2000, 124, 1515–1519. [Google Scholar] [CrossRef] [Green Version]
- Simpson, C.; Thomas, C.; Findlay, K.; Bayer, E.; Maule, A.J. An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 2009, 21, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Yagami, T.; Osuna, H.; Kouno, M.; Haishima, Y.; Nakamura, A.; Ikezawa, Z. Significance of carbohydrate epitopes in a latex allergen with beta-1,3-glucanase activity. Int. Arch. Allergy Immunol. 2002, 129, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Palomares, O.; Villalba, M.; Quiralte, J.; Polo, F.; Rodriguez, R. 1,3-beta-glucanases as candidates in latex-pollen-vegetable food cross-reactivity. Clin. Exp. Allergy 2005, 35, 345–351. [Google Scholar] [CrossRef]
- Wagner, S.; Radauer, C.; Hafner, C.; Fuchs, H.; Jensen-Jarolim, E.; Wuthrich, B.; Scheiner, O.; Breiteneder, H. Characterization of cross-reactive bell pepper allergens involved in the latex-fruit syndrome. Clin. Exp. Allergy 2004, 34, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Enkhbayar, P.; Kamiya, M.; Osaki, M.; Matsumoto, T.; Matsushima, N. Structural principles of leucine-rich repeat (LRR) proteins. Proteins 2004, 54, 394–403. [Google Scholar] [CrossRef]
- Kobe, B.; Kajava, A.V. The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 2001, 11, 725–732. [Google Scholar] [CrossRef]
- Weichel, M.; Vergoossen, N.J.; Bonomi, S.; Scibilia, J.; Ortolani, C.; Ballmer-Weber, B.K.; Pastorello, E.A.; Crameri, R. Screening the allergenic repertoires of wheat and maize with sera from double-blind, placebo-controlled food challenge positive patients. Allergy 2006, 61, 128–135. [Google Scholar] [CrossRef]
- Mohanta, T.; Yadav, D.; Khan, A.; Hashem, A.; Abd Allah, E.; Al-Harrasi, A. Molecular Players of EF-hand Containing Calcium Signaling Event in Plants. Int. J. Mol. Sci. 2019, 20, 1476. [Google Scholar] [CrossRef] [Green Version]
- Jolie, R.P.; Duvetter, T.; Van Loey, A.M.; Hendrickx, M.E. Pectin methylesterase and its proteinaceous inhibitor: A review. Carbohydr. Res. 2010, 345, 2583–2595. [Google Scholar] [CrossRef]
- Barderas, R.; Garcia-Selles, J.; Salamanca, G.; Colas, C.; Barber, D.; Rodriguez, R.; Villalba, M. A pectin methylesterase as an allergenic marker for the sensitization to Russian thistle (Salsola kali) pollen. Clin. Exp. Allergy 2007, 37, 1111–1119. [Google Scholar] [CrossRef]
- Egger, M.; Hauser, M.; Mari, A.; Ferreira, F.; Gadermaier, G. The role of lipid transfer proteins in allergic diseases. Curr. Allergy Asthma Rep. 2010, 10, 326–335. [Google Scholar] [CrossRef]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
2017 | Total Reads | Mapped Reads | %Mapped Reads | HQ Reads | %HQ Reads |
---|---|---|---|---|---|
Pollen Madrid 1 | 56.829.540 | 29.508.133 | 51.92 | 17.679.876 | 31.11 |
Pollen Madrid 2 | 51.099.090 | 27.351.198 | 53.53 | 15.463.238 | 30.26 |
Pollen Madrid 3 | 54.889.770 | 29.095.973 | 53.01 | 17.484.232 | 31.85 |
Pollen Ciudad Real 1 | 51.263.160 | 27.121.640 | 52.91 | 17.667.246 | 34.46 |
Pollen Ciudad Real 2 | 54.833.392 | 30.344.055 | 55.34 | 19.671.670 | 35.88 |
Pollen Ciudad Real 3 | 44.148.344 | 23.470.567 | 53.16 | 15.174.414 | 34.37 |
2018 | Total reads | Mapped reads | %Mapped reads | HQ reads | %HQ reads |
Pollen Madrid 1 | 69.632.502 | 36.876.163 | 52.96 | 24.110.014 | 34.62 |
Pollen Madrid 2 | 57.806.190 | 31.515.221 | 54.52 | 21.451.848 | 37.11 |
Pollen Madrid 3 | 70.511.258 | 38.187.455 | 54.16 | 25.894.258 | 36.72 |
Pollen Ciudad Real 1 | 57.131.912 | 28.713.056 | 50.26 | 18.545.118 | 32.46 |
Pollen Ciudad Real 2 | 51.317.428 | 26.177.323 | 51.01 | 16.593.250 | 32.33 |
Pollen Ciudad Real 3 | 51.544.796 | 26.470.467 | 51.35 | 16.975.778 | 32.93 |
(a) | |||||
ID. | Fold Change | GO_Description | KO_Definition | Pfam_Description | COG_Description |
MEHO01012663.1 | 56.60 | F:shikimate O-hydroxycinnamoyltransferase activity | Transferase | ||
MEHO01021292.1 | 32.46 | F:metal ion binding|F:nucleic acid binding|F:RNA-DNA hybrid ribonuclease activity | zf-RVT | ||
MEHO01007492.1 | 24.03 | C:cytoplasm|F:DNA binding|F:exonuclease activity|F:metal ion binding|F:RNA binding|F:RNA-DNA hybrid ribonuclease activity|P:DNA replication, removal of RNA primer | ribonuclease HI [EC:3.1.26.4] | Ribonuclease HI | |
MEHO01503913.1 | 18.82 | C:apoplast|F:guiding stereospecific synthesis activity|P:phenylpropanoid biosynthetic process | Dirigent | ||
MEHO01031871.1 | 16.10 | F:zinc ion binding | DYW_deaminase|PPR|PPR_1|PPR_2 | ||
MEHO01022721.1 | 14.80 | Exo_endo_phos|RVT_1 | |||
MEHO01032766.1 | 14.38 | C:endoplasmic reticulum|P:response to heat | HSP20 family protein | HSP20 | Molecular chaperone IbpA, HSP20 family |
MEHO01070426.1 | 14.35 | F:transferase activity, transferring hexosyl groups|P:metabolic process | UDPGT | UDP:flavonoid glycosyltransferase YjiC, YdhE family | |
(b) | |||||
ID | Fold Change | GO_Description | KO_Definition | Pfam_Description | COG_Description |
MEHO01015366.1 | −115.42 | C:integral component of membrane|F:zinc ion binding|P:defense response | Gly-zipper_YMGG|zf-RING_2 | ||
MEHO01137086.1 | −104.50 | C:nucleus|P:regulation of transcription, DNA-templated|P:transcription, DNA-templated | CCT_2|tify | ||
(c) | |||||
ID | Fold Change | GO_Description | KO_Definition | Pfam_Description | COG_Description |
MEHO01214398.1 | 2789.50 | F:lipid binding|P:lipid transport|P:response to ethylene|P:response to hydrogen peroxide|P:response to salicylic acid|P:response to wounding | Tryp_alpha_amyl | ||
MEHO01067431.1 | 1478.00 | C:cytoplasm|P:protein homooligomerization | HSP20 | ||
MEHO01094758.1 | 1419.95 | C:cytoplasm|P:protein homooligomerization | HSP20 | ||
MEHO01017478.1 | 1297 | C:chloroplast | HSP20 | ||
MEHO01041587.1 | 1074.98 | F:lipid binding|P:lipid transport | Tryp_alpha_amyl | ||
MEHO01207432.1 | 1071.85 | C:nucleus|P:response to heat | HSP20 family protein | HSP20 | Molecular chaperone IbpA, HSP20 family |
MEHO01397565.1 | 950.93 | C:cytoplasm|P:protein homooligomerization | HSP20 | ||
MEHO01126086.1 | 944.40 | C:cytoplasm|P:protein homooligomerization | HSP20 | ||
MEHO01035973.1 | 880.14 | C:chloroplast|P:defense response|P:response to biotic stimulus | Bet_v_1 | ||
MEHO01067929.1 | 862.03 | C:cytoplasm | HSP20 | ||
MEHO01121044.1 | 786.38 | C:cytoplasm|P:response to arsenic-containing substance|P:response to cadmium ion|P:response to copper ion|P:response to ethanol|P:response to heat|P:response to hydrogen peroxide | HSP20 family protein | HSP20 | Molecular chaperone IbpA, HSP20 family |
MEHO01028187.1 | 766.82 | Lir1 | |||
MEHO01022615.1 | 707.14 | DUF4283|zf-CCHC_4 | |||
MEHO01019001.1 | 689.60 | C:cytoplasm | HSP20 | ||
MEHO01005459.1 | 666.64 | C:cytoplasm|P:defense response|P:response to biotic stimulus | Bet_v_1 | ||
MEHO01009825.1 | 664.78 | C:endoplasmic reticulum membrane|F:FK506 binding|F:peptidyl-prolyl cis-trans isomerase activity|P:chaperone-mediated protein folding | FK506-binding protein 1 [EC:5.2.1.8] | FKBP_C | FKBP-type peptidyl-prolyl cis-trans isomerase |
MEHO01532070.1 | 613.47 | C:cytoplasm | HSP20 | ||
MEHO01126952.1 | 547.02 | C:nucleus|P:response to heat | HSP20 family protein | HSP20 | Molecular chaperone IbpA, HSP20 family |
MEHO01340596.1 | 545.97 | C:nucleus|P:response to heat | HSP20 family protein | HSP20 | Molecular chaperone IbpA, HSP20 family |
MEHO01043840.1 | 462.16 | F:metal ion binding|F:nucleic acid binding|F:RNA-DNA hybrid ribonuclease activity | zf-RVT | ||
MEHO01120068.1 | 44.88 | C:apoplast|C:cell wall|F:sucrose alpha-glucosidase activity|P:carbohydrate metabolic process | beta-fructofuranosidase [EC:3.2.1.26] | Glyco_hydro_32C|Glyco_hydro_32N | Sucrose-6-phosphate hydrolase SacC, GH32 family |
MEHO01032766.1 | 439.34 | C:endoplasmic reticulum|P:response to heat | HSP20 family protein | HSP20 | Molecular chaperone IbpA, HSP20 family |
MEHO01089025.1 | 427.45 | F:lipid binding|P:lipid transport | Tryp_alpha_amyl | ||
MEHO01005917.1 | 348.32 | F-box|FBD|LRR_2 | |||
MEHO01208798.1 | 346.28 | C:mitochondrion | HSP20 family protein | HSP20 | |
(d) | |||||
ID | Fold Change | GO_Description | KO_Definition | Pfam_Description | COG_Description |
MEHO01067659.1 | −425.58 | C:integral component of membrane|F:transporter activity|P:nitrate assimilation | PTR2 | Dipeptide/tripeptide permease | |
MEHO01000853.1 | −320.23 | F:metal ion binding|F:nucleic acid binding|F:RNA-DNA hybrid ribonuclease activity | zf-RVT | ||
MEHO01015099.1 | −320.18 | Exo_endo_phos|RVT_1 | |||
MEHO01121030.1 | −241.91 | C:extracellular region|C:membrane|F:acid phosphatase activity|F:metal ion binding | Metallophos | 3’,5’-cyclic AMP phosphodiesterase CpdA | |
MEHO01357234.1 | −233.31 | F:aspartic-type endopeptidase activity|F:endonuclease activity|F:nucleic acid binding|F:RNA-directed DNA polymerase activity|F:zinc ion binding|P:DNA integration | gag_pre-integrs|rve|RVT_2|zf-CCHC | ||
MEHO01008671.1 | −201.64 | C:integral component of membrane|C:plasma membrane|F:dipeptide transporter activity|P:dipeptide transport|P:pollen tube growth|P:protein transport | PTR2 | Dipeptide/tripeptide permease | |
MEHO01111302.1 | −172.68 | C:mitochondrion | RVT_2 | Transposase InsO and inactivated derivatives | |
MEHO01012083.1 | −166.71 | C:integral component of membrane|C:plasma membrane|F:transmembrane transporter activity|P:transport | EamA |
Protein Encoded by the Overexpressed Genes | Number of Isoforms in 2017 | Number of Isoforms in 2018 |
---|---|---|
HSP (20, 70, and 90) | 47 | 60 |
Glycoside hydrolase | 25 | 42 |
Leucine-rich repeat | 12 | 38 |
EF-Hand family | 9 | 13 |
Pollen allergen 1 | 5 | 4 |
Cofilin | 5 | 2 |
Pectinesterase | 7 | |
Serpin | 5 | |
Lipid transfer proteins | 7 | |
Thaumatin | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas, J.A.; Gutierrez-Albanchez, E.; Alfaya, T.; Feo Brito, F.; Gutierrez-Mañero, F.J. Search for New Allergens in Lolium perenne Pollen Growing under Different Air Pollution Conditions by Comparative Transcriptome Study. Plants 2020, 9, 1507. https://doi.org/10.3390/plants9111507
Lucas JA, Gutierrez-Albanchez E, Alfaya T, Feo Brito F, Gutierrez-Mañero FJ. Search for New Allergens in Lolium perenne Pollen Growing under Different Air Pollution Conditions by Comparative Transcriptome Study. Plants. 2020; 9(11):1507. https://doi.org/10.3390/plants9111507
Chicago/Turabian StyleLucas, Jose Antonio, Enrique Gutierrez-Albanchez, Teresa Alfaya, Francisco Feo Brito, and Francisco Javier Gutierrez-Mañero. 2020. "Search for New Allergens in Lolium perenne Pollen Growing under Different Air Pollution Conditions by Comparative Transcriptome Study" Plants 9, no. 11: 1507. https://doi.org/10.3390/plants9111507
APA StyleLucas, J. A., Gutierrez-Albanchez, E., Alfaya, T., Feo Brito, F., & Gutierrez-Mañero, F. J. (2020). Search for New Allergens in Lolium perenne Pollen Growing under Different Air Pollution Conditions by Comparative Transcriptome Study. Plants, 9(11), 1507. https://doi.org/10.3390/plants9111507