Non-Destructive Estimation of Total Chlorophyll Content of Apple Fruit Based on Color Feature, Spectral Data and the Most Effective Wavelengths Using Hybrid Artificial Neural Network—Imperialist Competitive Algorithm
Abstract
:1. Introduction
2. Results
2.1. Physical, Chemical, and Color Features of Different Apple Samples
2.2. Analysis of the Extracted Spectra of Samples
2.3. Non-Destructive Calculation of Total Chlorophyll Content Based on Spectroscopy
2.4. Non-Destructive Calculation of Total Chlorophyll Content Based on Color Features
3. Discussion
3.1. Comparison of the Results of Algorithms Based on Color and Spectral Data for Non-Destructive Estimation of Total Chlorophyll Content
3.2. Selection of the Most Effective Wavelengths
3.3. Comparison of the Results Obtained in this Study with the Results of Other Researchers
4. Materials and Methods
4.1. Data Collection
4.2. Spectroscopy Configuration
4.3. Pre-Processing of Spectral Data Extracted from Samples
4.4. Extraction of Color Feature
4.5. Extraction of Total Chlorophyll Content
4.6. Non-destructive Estimation of Total Chlorophyll Content
4.6.1. Spectral Data Used in This Study
4.6.2. Color Data Used in This Study
4.7. Selection of the Most Effective Wavelength at the Range of 660–720 nm for Non-Destructive Estimation of the Total Chlorophyll Content
4.8. Criteria for Evaluating the Performance of the Estimation System of Total Chlorophyll Content
5. Conclusions
- Using the color features related to the color space L*a*b* (i.e., channel a* and channel b*), the total chlorophyll content was estimated with R2 above 0.991. Therefore, this chemical property can be predicted using an ordinary camera.
- The hybrid ANN-ICA algorithm uses spectral data of 660–720 nm to predict the total chlorophyll content with a higher coefficient than that of color data. The value of R2 for the hybrid ANN-ICA was above 0.9977.
- According to the results, while the hybrid ANN-ICA that used the spectral data related to the most effective wavelength had an almost identical coefficient of determination rather than the one that used the spectral data of 660–720 nm.
- Considering that hybrid ANN-ICA algorithms estimate the total chlorophyll content using the spectral data of the most effective wavelengths, it is possible to develop a portable device estimating this feature in orchards, which would lead to better management during storage and post-harvest operations.
- It is recommended that this method is used to estimate the different physicochemical properties of other fruits.
Author Contributions
Funding
Conflicts of Interest
References
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Hernández-Hernández, J.; Arribas, J. A Computer Vision System Based on Majority-Voting Ensemble Neural Network for the Automatic Classification of Three Chickpea Varieties. Foods 2020, 9, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, F.B.; Sanchez-Bel, P.; Estan, M.T.; Martinez-Rodriguez, M.M.; Moyano, E.; Morales, B.; Fernández-Garcia, N. The effectiveness of grafting to improve tomato fruit quality. Sci. Hortic. 2010, 125, 211–217. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Hernández-Hernández, J.; Molina-Martínez, M.; Hernández-Hernández, M.; García-Mateos, G. Comparison of Different Classifiers and the Majority Voting Rule for the Detection of Plum Fruits in Garden Conditions. Remote Sens. 2019, 11, 2546. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, J.; Alegria, C.; Abreu, M.; Gonçalves, E.M.; Silva, C.L. Kinetics of changes in the physical quality parameters of fresh tomato fruits (Solanum lycopersicum, cv.‘Zinac’) during storage. J. Food Eng. 2013, 114, 338–345. [Google Scholar] [CrossRef]
- Tigist, M.; Workneh, T.S.; Woldetsadik, K. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 2013, 50, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Lu, R.; Chen, K. Assessment of tomato soluble solids content and pH by spatially-resolved and conventional Vis/NIR spectroscopy. J. Food Eng. 2018, 236, 19–28. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Karimzadeh, R.; Ilbeygi, E.; Arribas, J.I. Automatic non-destructive video estimation of maturation levels in Fuji apple (Malus Malus pumila) fruit in orchard based on colour (Vis) and spectral (NIR) data. Biosyst. Eng. 2020, 195, 136–151. [Google Scholar] [CrossRef]
- Mesa, K.; Serra, S.; Masia, A.; Gagliardi, F.; Bucci, D.; Musacchi, S. Seasonal trends of starch and soluble carbohydrates in fruits and leaves of ‘Abbé Fétel’ pear trees and their relationship to fruit quality parameters. Sci. Hortic. 2016, 211, 60–69. [Google Scholar] [CrossRef]
- Sirisomboon, P. NIR Spectroscopy for Quality Evaluation of Fruits and Vegetable. Mater. Today Proc. 2018, 5, 22481–22486. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Nieuwoudt, H.; Opara, U.L. Evaluation of biochemical markers associated with the development of husk scald and the use of diffuse reflectance NIR spectroscopy to predict husk scald in pomegranate fruit. Sci. Hortic. 2018, 232, 240–249. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L. Investigating non-destructive quantification and characterization of pomegranate fruit internal structure using X-ray computed tomography. Postharvest Biol. Technol. 2014, 95, 1–6. [Google Scholar] [CrossRef]
- Marcone, M.F.; Wang, S.; Albabish, W.; Nie, S.; Somnarain, D.; Hill, A. Diverse food based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int. 2013, 51, 729–747. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Rezaei, B. Automatic detection of greenhouse plants pests by image analysis. Tarım Makinaları Bilimi Derg. 2011, 7, 171–174. [Google Scholar]
- Brecht, J.K.; Shewfelt, L.R.; Garner, J.C.; Tollner, E.W. Using X-ray-computed Tomography to Nondestructively Determine Maturity of Green Tomatoes. Hortcience 1991, 26, 45–47. [Google Scholar] [CrossRef]
- Zhou, H.; Ye, Z.; Yu, Z.; Su, M.; Du, J. Application of low-field nuclear magnetic resonance and proton magnetic resonance imaging in evaluation of ‘Jinxiu’ yellow peach’s storage suitability. Emirates J. Food Agric. 2016, 28, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Cavaco, A.M.; Pires, R.; Antunes, M.D.; Panagopoulos, T.; Brázio, A.; Afonso, A.M.; Guerra, R. Validation of short wave near infrared calibration models for the quality and ripening of ‘Newhall’ orange on tree across years and orchards. Postharvest Biol. Technol. 2018, 141, 86–97. [Google Scholar] [CrossRef]
- Jamshidi, B. Non-destructive safety assessment of agricultural products using Vis/NIR spectroscopy. Nir News 2017, 28, 4–8. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Opara, U.L. Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. J. Food Eng. 2018, 217, 11–23. [Google Scholar] [CrossRef]
- Rungpichayapichet, P.; Nagle, M.; Yuwanbun, P.; Khuwijitjaru, P.; Mahayothee, B.; Muller, J. Prediction mapping of physicochemical properties in mango by hyperspectral imaging. Biosyst. Eng. 2017, 159, 109–120. [Google Scholar] [CrossRef]
- Santagapita, P.R.; Tylewicz, U.; Panarese, V.; Rocculi, P.; Dalla Rosa, M. Non-destructive assessment of kiwifruit physico-chemical parameters to optimise the osmotic dehydration process: A study on FT-NIR spectroscopy. Biosyst. Eng. 2016, 142, 101–109. [Google Scholar] [CrossRef]
- Sabzi, S.; Abbaspour-Gilandeh, Y.; García-Mateos, G.; Ruiz-Canales, A.; Molina-Martínez, J.M.; Arribas, J.I. An automatic non-destructive method for the classification of the ripeness stage of red delicious apples in orchards using aerial video. Agronomy 2019, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Novales, J.; Garde-Cerdán, T.; Tardáguila, J.; Gutiérrez-Gamboa, G.; Pérez-Álvarez, E.P.; Diago, M.P. Assessment of amino acids and total soluble solids in intact grape berries using contactless Vis and NIR spectroscopy during ripening. Talanta 2019, 199, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Lechaudel, M.; Urban, L.; Joas, J. Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (Cv.‘Cogshall’) without growth conditions bias. J. Agric. Food Chem. 2010, 58, 7532–7538. [Google Scholar] [CrossRef] [PubMed]
- Steele, M.R.; Gitelson, A.A.; Rundquist, D.C. A Comparison of Two Techniques for Nondestructive Measurement of Chlorophyll Content in Grapevine Leaves. Agron. J. 2008, 100, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Merzlyak, M.N.; Solovchenko, A.E.; Gitelson, A.A. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol. Technol. 2003, 27, 197–211. [Google Scholar] [CrossRef]
- Solovchenko, A.E.; Chivkunova, O.B.; Merzlyak, M.N.; Gudkovsky, V.A. Relationships between chlorophyll and carotenoid pigments during on- and off-tree ripening of apple fruit as revealed non-destructively with reflectance spectroscopy. Postharvest Biol. Technol. 2005, 38, 9–17. [Google Scholar] [CrossRef]
- Ncama, K.; Opara, U.L.; Tesfay, S.Z.; Fawole, O.A.; Magwaza, L.S. Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of ‘Valencia’ orange (Citrus sinensis) and ‘Star Ruby’ grapefruit (Citrus x paradisi Macfad). J. Food Eng. 2017, 193, 86–94. [Google Scholar] [CrossRef]
- Adebayo, S.E.; Hashim, N.; Abdan, K.; Hanafi, M. Application and potential ofbackscattering imaging techniques in agricultural and food processing—A review. J. Food Eng. 2016, 169, 155–164. [Google Scholar] [CrossRef]
- Betemps, D.L.; Fachinello, J.C.; Galarça, S.P.; Portela, N.M.; Remorini, D.; Massai, R.; Agati, G. Non-destructive evaluation of ripening and quality traits in apples using a multiparametric fluorescence sensor. J. Sci. Food Agric. 2012, 92, 1855–1864. [Google Scholar] [CrossRef]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Rossel, R.A.; McBratney, A.B. Diffuse reflectance spectroscopy as a tool for digital soil mapping. In Digital Soil Mapping with Limited Data; Mc Bratney, A.B., Hartemink, A.E., Mendonça-Santos, L., Eds.; Developments in Soil Science Series; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- García-Mateos, G.; Hernández-Hernández, J.L.; Escarabajal-Henarejos, D.; Jaén-Terrones, S.; Molina-Martínez, J.M. Study and comparison of color models for automatic image analysis in irrigation management applications. Agric. Water Manag. 2015, 151, 158–166. [Google Scholar] [CrossRef]
- Costa, G.; Noferini, M.; Fiori, G.; Torrigiani, P. Use of vis/NIR spectroscopy to assess fruit ripening stage and improve management in post-harvest chain. Fresh Prod. 2009, 1, 35–41. [Google Scholar]
- Amoriello, T.; Ciccoritti, R.; Paliotta, M.; Carbone, K. Classification and prediction of early-to-late ripening apricot quality using spectroscopic techniques combined with chemometric tools. Sci. Hortic. 2018, 240, 310–317. [Google Scholar] [CrossRef]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007. [Google Scholar] [CrossRef]
- Abbaspour-Gilandeh, Y.; Sabzi, S.; Hernández-Hernández, M.; Hernández-Hernández, J.L.; Azadshahraki, F. Nondestructive Estimation of the Chlorophyll b of Apple Fruit by Color and Spectral Features Using Different Methods of Hybrid Artificial Neural Network. Agronomy 2019, 9, 735. [Google Scholar] [CrossRef] [Green Version]
- Cayuela, J.A. Vis/NIR soluble solids prediction in intact oranges (Citrus sinensis L.) cv. Valencia Late by reflectance. Postharvest Biol. Technol. 2008, 47, 75–80. [Google Scholar] [CrossRef]
- Martínez-Valdivieso, D.; Font, R.; Blanco-Díaz, M.T.; Moreno-Rojas, J.M.; Gómez, P.; Alonso-Moraga, Á.; Río-Celestino, M.D. Application of near-infrared reflectance spectroscopy for predicting carotenoid content in summer squash fruit. Comput. Electron. Agric. 2014, 108, 71–79. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
Feature | Max | Min | Mean | SD |
---|---|---|---|---|
Length (mm) | 64.42 | 46.73 | 55.40 | 3.41 |
Diameter (mm) | 71.10 | 50.95 | 63.13 | 3.28 |
Weight (gr) | 165.22 | 64.11 | 114.72 | 16.33 |
First channel of L*a*b* | 80.54 | 66.84 | 76.21 | 2.59 |
Second channel of L*a*b* | −4.47 | −15.48 | −12.05 | 2.75 |
Third channel of L*a*b* | 47.59 | 31.79 | 42.63 | 2.95 |
Total chlorophyll content (µgr/mL) | 9.72 | 0.43 | 4.42 | 1.57 |
Description | Optimal Values |
---|---|
Number of layers | First layer: 8, Second layer: 12 |
Number of neurons | 2 |
Transfer function | First layer: tansig, Second layer: tansig |
Back-propagation network training function | trainlm |
Back-propagation weight/bias learning function | learnhd |
Description | R2 | SSE | MAE | MSE | RMSE |
---|---|---|---|---|---|
Mean ± SD (1000 iterations) | 0.947 ± 0.053 | 0.269 ± 0.419 | 0.092 ± 0.048 | 0.021 ± 0.032 | 0.127 ± 0.066 |
The best training state | 0.997 | 0.014 | 0.026 | 0.001 | 0.033 |
Description | Optimal Values |
---|---|
Number of layers | First layer: 13, Second layer: 17 |
Number of neurons | 2 |
Transfer function | First layer: tansig, Second layer: tansig |
Back-propagation network training function | trainscg |
Back-propagation weight/bias learning function | learngdm |
Description | R2 | SSE | MAE | MSE | RMSE |
---|---|---|---|---|---|
Mean ± SD (1000 iterations) | 0891 ± 0.047 | 0.659 ± 1.25 | 0.0151 ± 0.064 | 0.051 ± 0.096 | 0.206 ± 0.091 |
The best training state | 0.991 | 0.046 | 0.043 | 0.0035 | 0.059 |
Number of Features | Criteria | R2 | SSE | MAE | MSE | RMSE |
---|---|---|---|---|---|---|
3 | Mean ± SD (1000 iterations) | 0891 ± 0.047 | 0.329 ± 0.0721 | 0.096 ± 0.046 | 0.025 ± 0.055 | 0.138 ± 0.078 |
The best training state | 0.996 | 0.011 | 0.023 | 0.0008 | 0.0029 | |
5 | Mean ± SD (1000 iterations) | 0.946 ± 0.071 | 0.282 ± 0.0452 | 0.092 ± 0.041 | 0.022 ± 0.035 | 0.131 ± 0.067 |
The best training state | 0.998 | 0.019 | 0.031 | 0.002 | 0.038 | |
7 | Mean ± SD (1000 iterations) | 0.95 3 ±0.036 | 0.229 ± 0.0258 | 0.088 ± 0.037 | 0.018 ± 0.019 | 0.122 ± 0.051 |
The best training state | 0.996 | 0.009 | 0.023 | 0.0007 | 0.026 | |
9 | Mean ± SD (1000 iterations) | 0.954 ± 0.053 | 0.228 ± 0.280 | 0.087 ± 0.038 | 0.017 ± 0.022 | 0.121 ± 0.053 |
The best training state | 0.997 | 0.008 | 0.022 | 0.0006 | 0.025 |
Methods | Fruit | R2 |
---|---|---|
Proposed method using spectral features | Apple | 0.997 |
Proposed method using color features | Apple | 0.991 |
(Ncama et al. [27]) | Grapefruit | 0.943 |
(Adebayo et al. [28]) | Banana | 0.978 |
(Betemps et al. [29]) | Apple | 0.934 |
Description | Values |
---|---|
Number of layers | 17 |
Number of neurons | 1 |
Transfer function | tribas |
Back-propagation network training function | trainr |
Back-propagation weight/bias learning function | learnis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pourdarbani, R.; Sabzi, S.; Hernández-Hernández, M.; Hernández-Hernández, J.L.; Gallardo-Bernal, I.; Herrera-Miranda, I. Non-Destructive Estimation of Total Chlorophyll Content of Apple Fruit Based on Color Feature, Spectral Data and the Most Effective Wavelengths Using Hybrid Artificial Neural Network—Imperialist Competitive Algorithm. Plants 2020, 9, 1547. https://doi.org/10.3390/plants9111547
Pourdarbani R, Sabzi S, Hernández-Hernández M, Hernández-Hernández JL, Gallardo-Bernal I, Herrera-Miranda I. Non-Destructive Estimation of Total Chlorophyll Content of Apple Fruit Based on Color Feature, Spectral Data and the Most Effective Wavelengths Using Hybrid Artificial Neural Network—Imperialist Competitive Algorithm. Plants. 2020; 9(11):1547. https://doi.org/10.3390/plants9111547
Chicago/Turabian StylePourdarbani, Razieh, Sajad Sabzi, Mario Hernández-Hernández, José Luis Hernández-Hernández, Iván Gallardo-Bernal, and Israel Herrera-Miranda. 2020. "Non-Destructive Estimation of Total Chlorophyll Content of Apple Fruit Based on Color Feature, Spectral Data and the Most Effective Wavelengths Using Hybrid Artificial Neural Network—Imperialist Competitive Algorithm" Plants 9, no. 11: 1547. https://doi.org/10.3390/plants9111547
APA StylePourdarbani, R., Sabzi, S., Hernández-Hernández, M., Hernández-Hernández, J. L., Gallardo-Bernal, I., & Herrera-Miranda, I. (2020). Non-Destructive Estimation of Total Chlorophyll Content of Apple Fruit Based on Color Feature, Spectral Data and the Most Effective Wavelengths Using Hybrid Artificial Neural Network—Imperialist Competitive Algorithm. Plants, 9(11), 1547. https://doi.org/10.3390/plants9111547