Intragenomic Polymorphism of the ITS 1 Region of 35S rRNA Gene in the Group of Grasses with Two-Chromosome Species: Different Genome Composition in Closely Related Zingeria Species
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dobzhansky, T. Genetics and the Origin of Species; Eldredge, N., Gould, S.J., Eds.; Columbia Univ. Press: New York, NY, USA, 1937. [Google Scholar]
- Stebbins, G.L. Polyploidy, hybridization, and the invasion of new habitats. Ann. Missouri Bot. Gard. 1985, 72, 824–832. [Google Scholar] [CrossRef]
- Soltis, P.S.; Marchant, D.B.; Van de Peer, Y.; Soltis, D.E. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 2015, 35, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodionov, A.V.; Amosova, A.V.; Belyakov, E.A.; Zhurbenko, P.M.; Mikhailova, Y.V.; Punina, E.O.; Shneyer, V.S.; Loskutov, I.G.; Muravenko, O.V. Genetic Consequences of Interspecific Hybridization, Its Role in Speciation and Phenotypic Diversity of Plants. Russ. J. Genet. 2019, 55, 278–294. [Google Scholar] [CrossRef]
- Schranz, M.E.; Mohammadin, S.; Edger, P.P. Ancient whole genome duplications, novelty and diversification: The WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 2012, 15, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Tank, D.C.; Eastman, J.M.; Pennell, M.W.; Soltis, P.S.; Soltis, D.E.; Hinchliff, C.E.; Brown, J.W.; Sessa, E.B.; Harmon, L.J. Nested radiations and the pulse of angiosperm diversification: Increased diversification rates often follow whole genome duplications. New Phytol. 2015, 207, 454–467. [Google Scholar] [CrossRef] [Green Version]
- Tzvelev, N.N.; Zhukova, P.G. On the minimal main chromosome number in the family Poaceae. Bot. Zhurn. 1974, 59, 265–269. (In Russian) [Google Scholar]
- Gabrielian, E. Zingeria P.A. Smirn. In Flora of Armenia.11. Poaceae; Takhtadjan, A.L., Ed.; A.R.G. Gartner Verlag KG: Ruggell, Liechtenstein, 2009; pp. 294–298. (In Russian) [Google Scholar]
- Kotseruba, V.; Gernand, D.; Meister, A.; Houben, A. Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2 n = 8). Genome 2003, 46, 156–163. [Google Scholar] [CrossRef]
- Tzvelev, N.N.; Bolkhovskikh, Z.V. On the genus Zingeria P. Smirn. and the closely allied genera of Gramineae (a karyosystematic study). Bot. Zhurn. 1965, 50, 1317–1320. (In Russian) [Google Scholar]
- Kotseruba, V.; Pistrick, K.; Blattner, F.R.; Kumke, K.; Weiss, O.; Rutten, T.; Fuchs, J.; Endo, T.; Nasuda, S.; Ghukasyan, A.; et al. The evolution of the hexaploid grass Zingeria kochii (Mez) Tzvel. (2n = 12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol. Phylogenet. Evol. 2010, 56, 146–155. [Google Scholar] [CrossRef]
- Sokolovskaya, A.P.; Probatova, N.S. On the least chromosome number (2n = 4) of Colpodium versicolor (Stev.) Woronow (Poaceae). Bot. Zhurn. 1977, 62, 241–245. (In Russian) [Google Scholar]
- Davlianidze, M.T. Chromosome numbers in the representatives of the flora from Georgia. Bot. Zhurn. 1985, 70, 698–700. (In Russian) [Google Scholar]
- Kotseruba, V.; Pistrick, K.; Gernand, D.; Meister, A.; Ghukasyan, A.; Gabrielyan, I.; Houben, A. Characterisation of the low-chromosome number grass Colpodium versicolor (Stev.) Schmalh. (2n = 4) by molecular cytogenetics. Caryologia 2005, 58, 241–245. [Google Scholar] [CrossRef]
- Rodionov, A.V.; Punina, E.O.; Dobroradova, M.A.; Tyupa, N.B.; Nosov, N.N. Caryological study of the grasses (Poaceae): Chromosome numbers of some Aveneae, Poeae, Phalarideae, Phleeae, Bromeae, Triticeae. Bot. Zhurn. 2006, 91, 615–627. (In Russian) [Google Scholar]
- Gnutikov, A.A.; Nosov, N.N.; Rodionov, A.V. IAPT chromosome data 32/7. (K. Marhold & J. Kučera (eds.), & al. IAPT chromosome data 32). Taxon 2020, 69, 1129–1130. [Google Scholar] [CrossRef]
- Tzvelev, N.N. Grasses of the USSR; Nauka: Leningrad, Russia, 1976; ISBN 545827301X, ISBN 9785458273015. (In Russian) [Google Scholar]
- Rodionov, A.V.; Kim, E.S.; Punina, E.O.; Machs, E.M.; Tyupa, N.B.; Nosov, N.N. Evolution of chromosome numbers in the tribes Aveneae and Poeae inferred from the comparative analysis of the internal transcribed spacers ITS1 and ITS2 of nuclear 45S rRNA genes. Bot. Zhurn. 2007, 92, 57–71. (In Russian) [Google Scholar]
- Rodionov, A.V.; Kim, E.S.; Nosov, N.N.; Raiko, M.P.; Machs, E.M.; Punina, E.O. Molecular phylogenetic study of the genus Colpodium sensu lato (Poaceae: Poeae). Ecol. Genet. 2008, 6, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.S.; Bolsheva, N.L.; Samatadze, T.E.; Nosov, N.N.; Nosova, I.V.; Zelenin, A.V.; Punina, E.O.; Muravenko, O.V.; Rodionov, A.V. The unique genome of two-chromosome grasses Zingeria and Colpodium, its origin, and evolution. Russ. J. Genet. 2009, 45, 1329. [Google Scholar] [CrossRef]
- Soreng, R.J.; Peterson, P.M.; Romaschenko, K.; Davidse, G.; Zuloaga, F.O.; Judziewicz, E.J.; Filgueiras, T.S.; Davis, J.I.; Morrone, O. A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Syst. Evol. 2015, 53, 117–137. [Google Scholar] [CrossRef]
- Soreng, R.J.; Peterson, P.M.; Romaschenko, K.; Davidse, G.; Teisher, J.K.; Clark, L.G.; Barberá, P.; Gillespie, L.J.; Zuloaga, F.O. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. J. Syst. Evol. 2017, 55, 259–290. [Google Scholar] [CrossRef] [Green Version]
- Andronova, E.V.; Machs, E.M.; Filippov, E.G.; Raiko, M.P.; Lee, Y.-I.; Averyanov, L.V. Phylogeography of the genus Cypripedium (Orchidaceae) taxa in Russia. Bot. Zhurn. 2017, 102, 1027–1059. (In Russian) [Google Scholar]
- Belyakov, E.A.; Machs, E.M.; Mikhailova, Y.V.; Rodionov, A.V. The study of hybridization processes within genus Sparganium L. subgenus Xanthosparganium Holmb. Based on data of next generation sequencing (NGS). Ecol. Genet. 2019, 17, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Sáez-Vásquez, J.; Delseny, M. Ribosome biogenesis in plants: From functional 45S ribosomal DNA organization to ribosome assembly factors. Plant Cell 2019, 31, 1945–1967. [Google Scholar] [CrossRef] [Green Version]
- Garcia, S.; Kovařík, A.; Leitch, A.R.; Garnatje, T. Cytogenetic features of rRNA genes across land plants: Analysis of the Plant rDNA database. Plant J. 2017, 89, 1020–1030. [Google Scholar] [CrossRef] [Green Version]
- Rosato, M.; Kovařík, A.; Garilleti, R.; Rosselló, J.A. Conserved organisation of 45S rDNA sites and rDNA gene copy number among major clades of early land plants. PLoS ONE 2016, 11, 1–18. [Google Scholar] [CrossRef]
- Hoffmann, M.H.; Schneider, J.; Hase, P.; Roser, M. Rapid and recent world-wide diversification of bluegrasses (Poa, Poaceae) and related genera. PLoS ONE 2013, 8, E60061. [Google Scholar] [CrossRef] [Green Version]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Fomin, A.; Woronov, Y. Keys to Plants of the Caucasus and Crimea; Tipographiya, K.G., Ed.; Kozlovskago: Tiflis, Georgia, 1909. (In Russian) [Google Scholar]
- Tzvelev, N.N. On the genus Colpodium Trin. Novit. Syst. Pl. Vasc. 1964, 1, 5–19. (In Russian) [Google Scholar]
- Tkach, N.; Schneider, J.; Döring, E.; Wölk, A.; Hochbach, A.; Nissen, J.; Winterfeld, G.; Meyer, S.; Gabriel, J.; Hoffmann, M.H.; et al. Phylogenetic lineages and the role of hybridization as driving force of evolution in grass supertribe Poodae. Taxon 2020, 69, 234–277. [Google Scholar] [CrossRef] [Green Version]
- Pogosyan, A.I.; Narinyan, S.G.; Voskanyan, V.E. Towards karyological and geographical study of some edificators in upper part of alpine zone of Aragats Montains. Biol. Zh. Arm. 1972, 25, 15–22. (In Russian) [Google Scholar]
- Boissier, E. Plantes nouvelles recueillies par M. P. de Tchihatcheff, en Asie mineure, et décrites pendant l’année. Ann. des Sci. Nat. Bot. 1854, 4, 243–255. [Google Scholar]
- Boissier, E. Diagnoses Plantarum Orientalium Novarum. N.o 13; Typis Henrici Wolfrath: Neocomi, 1854; Available online: https://bibdigital.rjb.csic.es/records/item/10713-diagnoses-plantarum-orientalium-novarum-n-ordm-13?offset=9 (accessed on 20 November 2019).
- Björkman, S.O. Zingeria biebersteiniana (Claus) P. Smirn—One more grass species with the chromosome number 2n = 8. Sven. Bot. Tidskr. 1956, 50, 513–516. [Google Scholar]
- Grecescu, D. Conspectul Florei Romaniei; Tipogr. Dreptatea: Bucureşti, Romania, 1898. [Google Scholar]
- Schischkin, B. Agrostis. In Flora of the U.S.S.R., vol. 2 Gramineae Juss; Komarov, V.L., Ed.; Akademiya Nauk SSSR: Leningrad, Russia, 1934; pp. 170–188. (In Russian) [Google Scholar]
- Chrtek, J. Bemerkungen zur Gattung Zingeria P. Smirn. Novit. Bot. Delect. Seminum Horti Bot. Univ. Carol. Prag. 1963, 1, 1–3. [Google Scholar]
- Tutin, T.G. Gramineae. In Flora Europaea Vol. 5; Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1980; pp. 118–267. ISBN 9780521153706. [Google Scholar]
- Dihoru, G.; Boruz, V. Species to the limit of specific spreading area in Romania: Zingeria pisidica (Boiss.) Tutin. Oltenia. Stud. şi comunicări. Ştiinţele Nat. 2013, 29, 137–144. [Google Scholar]
- Tzvelev, N.N. Poaceae. In Konspekt Flory Kavkaza 2: Magnoliophyta: Liliopsida; Takhtadjan, A.L., Ed.; Saint Petersburg University: Saint Petersburg, Russia, 2006; pp. 248–378. ISBN 5-288-04040-0. (In Russian) [Google Scholar]
- Sokolovskaya, A.P.; Probatova, N.S. Chromosome numbers of some grasses (Poaceae) of the U.S.S.R. flora. III. Bot. Zhurn. 1979, 64, 1245–1258. (In Russian) [Google Scholar]
- Ghukasyan, A.G. Speciation in genus Zingeria P. A. Smirn. (Poaceae) of the Armenian Flora. Takhtajania 2011, 1, 142–144. (In Russian) [Google Scholar]
- Tzvelev, N.N. Some notes on the grasses (Poaceae) of the Caucasus. Bot. Zhurn. 1993, 78, 83–95. (In Russian) [Google Scholar]
- Tzvelev, N.N.; Probatova, N.S. Grasses of Russia; KMK: Moscow, Russia, 2019; ISBN 978-5-907213-41-8. (In Russian) [Google Scholar]
- Roshevitz, R.U. Eremopoa. In Flora of the U.S.S.R., Vol. 2 Gramineae Juss; Komarov, L.V., Ed.; Akademiya Nauk SSSR: Leningrad, Russia, 1934; pp. 429–432. (In Russian) [Google Scholar]
- Grif, V.G. New chromosome numbers of plants. Bot. Zhurn. 1965, 50, 1133–1135. (In Russian) [Google Scholar]
- Tzvelev, N.N.; Grif, V.G. Karyosystematic study of the genus Eremopoa Roshev. (Gramineae). Bot. Zhurn. 1965, 50, 1457–1460. (In Russian) [Google Scholar]
- Stoeva, M.P. Chromosome Number Reports LXXXV. Taxon 1984, 33, 756–760. [Google Scholar]
- Bailey, J.P.; Stace, C.A. Chromosome Data 1. Int. Organ. Plant Biosyst. Newsl. 1989, 13, 16. [Google Scholar]
- Punina, E.O.; Myakoshina, Y.A.; Dobryakova, K.S.; Nosov, N.N.; Rodionov, A.V. Karyological study of the grasses (Poaceae) of Altai and Altai Krai. Turczaninowia 2013, 16, 127–133. (In Russian) [Google Scholar]
- Gnutikov, A.A.; Myakoshina, Y.A.; Punina, E.O.; Rodionov, A.V. A karyological study of grasses (Poaceae) of Altai. II. Turczaninowia 2017, 20, 16–22. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Clayton, W.D.; Renvoize, S.A. Genera Graminum. Grasses of the World. Kew Bull. Addit. Ser. 1986, 13, 1–389. [Google Scholar]
- Soreng, R.J. Eremopoa Roshev. Contr. U. S. Natl. Herb. 2003, 48, 310–311. [Google Scholar]
- Gillespie, L.J.; Archambault, A.; Soreng, R.J. Phylogeny of Poa (Poaceae) based on trnT-trnF sequence data: Major clades and basal relationships. Aliso 2007, 23, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, L.J.; Soreng, R.J.; Cabi, E.; Amiri, N. Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa (including Eremopoa and Lindbergella) (Poaceae, Poeae, Poinae). PhytoKeys 2018, 111, 69. [Google Scholar] [CrossRef]
- Soreng, R.J.; Bull, R.D.; Gillespie, L.J. Phylogeny and Reticulation in Poa Based on Plastid trnTLF and nrITS Sequences with Attention to Diploids. In Diversity, Phylogeny and Evolution of Monocotyledons; Seberg, O., Petersen, G., Barfod, A.S., Davis, J.I., Eds.; Aarhus University Press: Aarhus, Denmark, 2010; pp. 619–644. ISBN 9788779343986. [Google Scholar]
- Nosov, N.N.; Punina, E.O.; Machs, E.M.; Rodionov, A.V. Interspecies hybridization in the origin of plant species: Cases in the genus Poa sensu lato. Biol. Bull. Rev. 2015, 5, 366–382. [Google Scholar] [CrossRef]
- Cabi, E.; Soreng, R.J.; Gillespie, L.J. Taxonomy of Poa jubata and a new section of the genus (Poaceae). Turk. J. Bot. 2017, 41, 405–415. [Google Scholar] [CrossRef]
- Liming, S.; Yingying, Y.; Xingsheng, D. Comparative cytogenetic studies on the red muntjac, Chinese muntjac, and their F1 hybrids. Cytogenet. Genome Res. 1980, 26, 22–27. [Google Scholar] [CrossRef]
- Liming, S.; Pathak, S. Gametogenesis in a male Indian muntjac x Chinese muntjac hybrid. Cytogenet. Genome Res. 1981, 30, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Chapman, D.I.; Chapman, N.G. The taxonomic status of feral muntjac deer (Muntiacus sp.) in England. J. Nat. Hist. 1982, 16, 381–387. [Google Scholar] [CrossRef]
- Wendel, J.F. The wondrous cycles of polyploidy in plants. Am. J. Bot. 2015, 102, 1753–1756. [Google Scholar] [CrossRef] [Green Version]
- Löve, Á. Conspectus of the Triticeae. Feddes Repert. 1984, 95, 425–521. [Google Scholar] [CrossRef]
- Lim, G.; Balke, S.; Meier, M.R. Determining species boundaries in a world full of rarity: Singletons, species delimitation methods. Syst. Bot. 2012, 61, 165–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Ridgway, K.; Duck, J.; Young, J.P. Identification of roots from grass swards using PCR-RFLP and FFLP of the plastid trnL (UAA) intron. BMC Ecol. 2003, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. ISBN 008088671X. [Google Scholar]
- Andrews, S. FastQC a Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 8 November 2020).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Aronesty, E. Comparison of Sequencing Utility Programs. Open Bioinform. J. 2013, 7, 1–8. [Google Scholar] [CrossRef]
- BLAST: Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 8 November 2020).
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Templeton, A.R.; Crandall, K.A.; Sing, C.F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 1992, 132, 619–633. [Google Scholar] [PubMed]
- Clement, M.; Posada, D.; Crandall, K. A TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef] [Green Version]
- tcsBU. Available online: http://cibio.up.pt/software/tcsBU/ (accessed on 8 November 2020).
- Múrias dos Santos, A.; Cabezas, M.P.; Tavares, A.I.; Xavier, R.; Branco, M. tcsBU: A tool to extend TCS network layout and visualization. Bioinformatics 2016, 32, 627–628. [Google Scholar] [CrossRef] [Green Version]
- Bryant, D.; Moulton, V. Neighbor-net: An agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 2004, 21, 255–265. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodionov, A.V.; Gnutikov, A.A.; Nosov, N.N.; Machs, E.M.; Mikhaylova, Y.V.; Shneyer, V.S.; Punina, E.O. Intragenomic Polymorphism of the ITS 1 Region of 35S rRNA Gene in the Group of Grasses with Two-Chromosome Species: Different Genome Composition in Closely Related Zingeria Species. Plants 2020, 9, 1647. https://doi.org/10.3390/plants9121647
Rodionov AV, Gnutikov AA, Nosov NN, Machs EM, Mikhaylova YV, Shneyer VS, Punina EO. Intragenomic Polymorphism of the ITS 1 Region of 35S rRNA Gene in the Group of Grasses with Two-Chromosome Species: Different Genome Composition in Closely Related Zingeria Species. Plants. 2020; 9(12):1647. https://doi.org/10.3390/plants9121647
Chicago/Turabian StyleRodionov, Alexander V., Alexander A. Gnutikov, Nikolai N. Nosov, Eduard M. Machs, Yulia V. Mikhaylova, Victoria S. Shneyer, and Elizaveta O. Punina. 2020. "Intragenomic Polymorphism of the ITS 1 Region of 35S rRNA Gene in the Group of Grasses with Two-Chromosome Species: Different Genome Composition in Closely Related Zingeria Species" Plants 9, no. 12: 1647. https://doi.org/10.3390/plants9121647
APA StyleRodionov, A. V., Gnutikov, A. A., Nosov, N. N., Machs, E. M., Mikhaylova, Y. V., Shneyer, V. S., & Punina, E. O. (2020). Intragenomic Polymorphism of the ITS 1 Region of 35S rRNA Gene in the Group of Grasses with Two-Chromosome Species: Different Genome Composition in Closely Related Zingeria Species. Plants, 9(12), 1647. https://doi.org/10.3390/plants9121647