Development of Transgenic Brassica Crops against Biotic Stresses Caused by Pathogens and Arthropod Pests
Abstract
:1. Introduction
2. Brassica Transgenesis
3. List of Common Pests and Pathogens of Brassica Species
4. Recent Progress of Transgenic Research in Brassica Species against Pathogens
5. Recent Progress of Transgenic Research in Brassica Species against Arthropod Pests
6. Progress on Transgenic Research in Beneficial Biotic Interactions of Brassica Species
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Katche, E.; Quezada-Martinez, D.; Katche, E.I.; Vasquez-Teuber, P.; Mason, A.S. Interspecific hybridization for Brassica crop improvement. Crop. Breed. Genet. Genom. 2019, 1, e190007. [Google Scholar]
- Francisco, M.; Tortosa, M.; Martínez-Ballesta, M.D.C.; Velasco, P.; García-Viguera, C.; Moreno, D.A. Nutritional and phytochemical value of Brassica crops from the agri-food perspective. Ann. Appl. Biol. 2017, 170, 273–285. [Google Scholar] [CrossRef]
- Koh, J.C.; Barbulescu, D.M.; Norton, S.; Redden, B.; Salisbury, P.A.; Kaur, S.; Cogan, N.; Slater, A.T. A multiplex PCR for rapid identification of Brassica species in the triangle of U. Plant Methods 2017, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Database. Top Exports of “Cabbages and Other Brassicas”. 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 13 September 2020).
- Eckes, A.H.; Gubała, T.; Nowakowski, P.; Szymczyszyn, T.; Wells, R.; Irwin, J.A.; Horro, C.; Hancock, J.M.; King, G.; Dyer, S.C.; et al. Introducing the Brassica information portal: Towards integrating genotypic and phenotypic Brassica crop data. F1000Research 2017, 6, 465. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.; Shahzad, B.; Bajwa, A.A.; Hussain, S.; Rehman, A.; Alam Cheema, S.; Abbas, T.; Ali, A.; Shah, L.; Adkins, S.; et al. Utilizing the allelopathic potential of Brassica species for sustainable crop production: A review. J. Plant Growth Regul. 2019, 38, 343–356. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Rehman, M.Z.U.; Rinklebe, J.; Tsang, D.C.; Bashir, A.; Maqbool, A.; Tack, F.; Ok, Y.-S. Cadmium phytoremediation potential of Brassica crop species: A review. Sci. Total Environ. 2018, 631, 1175–1191. [Google Scholar] [CrossRef]
- Sanlier, N.; Guler, S.M. The benefits of Brassica vegetables on human health. J. Hum. Health Res. 2018, 1, 1–13. [Google Scholar]
- Poveda, J.; Eugui, D.; Velasco, P. Natural control of plant pathogens through glucosinolates: An effective strategy against fungi and oomycetes. Phytochem. Rev. 2020, 19, 1045–1059. [Google Scholar] [CrossRef]
- Rustagi, A.; Negi, N.P.; Choudhury, H.D.; Mahajan, A.; Verma, S.; Kumar, D.; Rajwanshi, R.; Sarin, N.B. Transgenic approaches for improvement of brassica species. In Brassica Improvement; Wani, S.H., Thakur, A.K., Khan, Y.J., Eds.; Springer: Cham, Switzerland, 2020; pp. 187–213. [Google Scholar]
- Shah, N.; Anwar, S.; Xu, J.; Hou, Z.; Salah, A.; Khan, S.; Gong, J.; Shang, Z.; Qian, L.; Zhang, C. The response of transgenic Brassica species to salt stress: A review. Biotechnol. Lett. 2018, 40, 1159–1165. [Google Scholar] [CrossRef]
- Agnihotri, A.; Seth, C.S. Transgenic brassicaceae: A promising approach for phytoremediation of heavy metals. In Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids; Prasad, M.N.V., Ed.; Academic Press: London, UK, 2019; pp. 239–255. [Google Scholar]
- Gerszberg, A. Tissue culture and genetic transformation of cabbage (Brassica oleracea var. capitata): An overview. Planta 2018, 248, 1037–1048. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Srivastava, D.K. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol. Lett. 2016, 38, 1049–1063. [Google Scholar] [CrossRef]
- Zhang, F.L.; Takahata, Y.; Watanabe, M.; Xu, J.B. Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep. 2000, 19, 569–575. [Google Scholar] [CrossRef]
- Lee, M.K.; Kim, H.S.; Kim, J.S.; Kim, S.H.; Park, Y.D. Agrobacterium-mediated transformation system for large-scale producion of transgenic chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J. Plant Biol. 2004, 47, 300–306. [Google Scholar] [CrossRef]
- Wang, W.C.; Menon, G.; Hansen, G. Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep. 2003, 22, 274–281. [Google Scholar] [CrossRef]
- Bhalla, P.L.; Singh, M.B. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat. Protoc. 2008, 3, 181. [Google Scholar] [CrossRef]
- Mooney, B.C.; Graciet, E. A simple and efficient Agrobacterium-mediated transient expression system to dissect molecular processes in Brassica rapa and Brassica napus. Plant Direct 2020, 4, e00237. [Google Scholar] [CrossRef]
- Kowalczyk, T.; Gerszberg, A.; Durańska, P.; Biłas, R.; Hnatuszko-Konka, K. High efficiency transformation of Brassica oleracea var. botrytis plants by Rhizobium rhizogenes. AMB Express 2018, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Rathore, D.S.; Doohan, F.; Mullins, E. Capability of the plant-associated bacterium, Ensifer adhaerens strain OV14, to genetically transform its original host Brassica napus. PCTOC 2016, 127, 85–94. [Google Scholar] [CrossRef]
- Busi, R.; Powles, S.B. Transgenic glyphosate-resistant canola (Brassica napus) can persist outside agricultural fields in Australia. Agric. Ecosyst. Environ. 2016, 220, 28–34. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, W.; Ma, K.; Li, J.; Liang, Y.; Darmency, H. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. Plant Sci. 2013, 211, 42–51. [Google Scholar] [CrossRef]
- Kim, C.; Cho, W.; Kim, H. Yield loss of Spring Chinese cabbage as affected by infection time of clubroot disease in fields. Plant Dis. Res. 2000, 6, 23–26. [Google Scholar]
- Shukla, A.K. Estimation of yield losses to Indian mustard (Brassica juncea) due to Sclerotinia stem rot. J. Phytol. Res. 2005, 18, 267–268. [Google Scholar]
- Sotelo, T.; Lema, M.; Soengas, P.; Cartea, M.E.; Velasco, P. In vitro activity of glucosinolates and their degradation products against brassica-pathogenic bacteria and fungi. Appl. Environ. Microbiol. 2015, 81, 432–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortosa, M.; Cartea, M.E.; Rodríguez, V.M.; Velasco, P. Unraveling the metabolic response of Brassica oleracea exposed to Xanthomonas campestris pv. campestris. J. Sci. Food Agric. 2018, 98, 3675–3683. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Bernabé, L.; Madloo, P.; Rodríguez, V.M.; Francisco, M.; Soengas, P. Dissecting quantitative resistance to Xanthomonas campestris pv. campestris in leaves of Brassica oleracea by QTL analysis. Sci. Rep. 2019, 9, 1–11. [Google Scholar]
- Sun, Q.; Zhang, E.; Liu, Y.; Xu, Z.; Hui, M.; Zhang, X.; Cai, M. Transcriptome analysis of two lines of Brassica oleracea in response to early infection with Xanthomonas campestris pv. campestris. Can. J. Plant Pathol. 2020, 1–13. [Google Scholar] [CrossRef]
- Oskiera, M.; Kałużna, M.; Kowalska, B.; Smolinska, U. Pectobacterium carotovorum subsp. odoriferum on cabbage and Chinese cabbage: Identification, characterization and taxonomic relatedness of bacterial soft rot causal agents. J. Plant Pathol. 2017, 99, 149–160. [Google Scholar]
- Saharan, G.S.; Mehta, D.N.; Meena, P.D.; Dayal, P. Alternaria Diseases of Crucifers: Biology, Ecology and Disease Management; Springer: Singapore, 2016. [Google Scholar]
- Surinder, M.A.K.W.C.; Banga, S.; Baudh, M.P.Y.V.T.; Barbetti, B.M.J. Patterns of inheritance for cotyledon resistance against Sclerotinia sclerotiorum in Brassica napus. Euphytica 2020, 216, 79. [Google Scholar] [CrossRef]
- Van de Wouw, A.P.; Howlett, B.J. Advances in understanding the Leptosphaeria maculans-Brassica pathosystem and their impact on disease management. Can. J. Plant Pathol. 2020, 42, 149–163. [Google Scholar] [CrossRef]
- Cevik, V.; Boutrot, F.; Apel, W.; Robert-Seilaniantz, A.; Furzer, O.J.; Redkar, A.; Castel, B.; Kover, P.X.; Prince, D.C.; Holub, E.B.; et al. Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida). Proc. Natl. Acad. Sci. USA 2019, 116, 2767–2773. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Lee, J.S. New downy mildew disease caused by Hyaloperonospora brassicae on Pak choi (Brassica rapa) in Korea. Res. Plant Dis. 2019, 25, 99. [Google Scholar]
- Thines, M.; Choi, Y.J. Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology 2016, 106, 6–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerret, M.G.; Nyalugwe, E.P.; Maina, S.; Barbetti, M.J.; Van Leur, J.A.; Jones, R.A. Biological and molecular properties of a Turnip mosaic virus (TuMV) strain that breaks TuMV resistances in Brassica napus. Plant Dis. 2017, 101, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Fening, K.O.; Forchibe, E.E.; Wamonje, F.O.; Adama, I.; Afreh-Nuamah, K.; Carr, J.P. First report and distribution of the indian mustard aphid, Lipaphis erysimi pseudobrassicae (Hemiptera: Aphididae) on cabbage (Brassica oleracea var capitata) in Ghana. J. Econ. Entomol. 2020, 113, 1363–1372. [Google Scholar] [CrossRef]
- Nouri-Ganbalani, G.; Borzoui, E.; Shahnavazi, M.; Nouri, A. Induction of resistance against Plutella xylostella (L.) (Lep.: Plutellidae) by jasmonic acid and mealy cabbage aphid feeding in Brassica napus L. Front. Physiol. 2018, 9, 859. [Google Scholar] [CrossRef]
- Marco, H.G.; Gäde, G. Structure and function of adipokinetic hormones of the large white butterfly Pieris brassicae. Physiol. Entomol. 2017, 42, 103–112. [Google Scholar] [CrossRef]
- Jafari, M.; Shams-Bakhsh, M. Preliminary results of an attempt to produce resistance to Turnip Mosaic Virus in transgenic canola (Brassica napus). Iran. J. Virol. 2018, 12, 25–33. [Google Scholar]
- Guan-Lin, W.; Hong-Jun, F.; Huo-Xu, W.; Hong-Yan, L.I.; Yu-Tang, W. Pathogen-resistant transgenic plant of Brassica pekinensis by transfering antibacterial peptide gene and its genetic stability. J. Int. Plant Biol. 2002, 44, 951–955. [Google Scholar]
- Jung, Y.-J.; Choi, C.-S.; Park, J.-H.; Kang, H.-W.; Choi, J.-E.; Nou, I.-S.; Lee, S.-Y.; Kang, K.-K. Overexpression of the pineapple fruit bromelain gene (BAA) in transgenic Chinese cabbage (Brassica rapa) results in enhanced resistance to bacterial soft rot. Electron. J. Biotechnol. 2008, 11, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Vanjildorj, E.; Song, S.Y.; Yang, Z.H.; Choi, J.E.; Noh, Y.S.; Park, S.; Lim, W.J.; Cho, K.M.; Yun, H.D.; Lim, Y.P. Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Plant Cell Rep. 2009, 28, 1581–1591. [Google Scholar] [CrossRef]
- Hwang, B.H.; Bae, H.; Lim, H.S.; Kim, K.B.; Kim, S.J.; Im, M.H.; Park, B.S.; Kim, J. Overexpression of polygalacturonase-inhibiting protein 2 (PGIP2) of Chinese cabbage (Brassica rapa ssp. pekinensis) increased resistance to the bacterial pathogen Pectobacterium carotovorum ssp. carotovorum. PCTOC 2010, 103, 293–305. [Google Scholar] [CrossRef]
- Reader, J.K.; Christey, M.C.; Braun, R.H. Evaluation of cauliflower transgenic for resistance to Xanthomonas campestris pv. campestris. In III International Symposium on Brassicas and XII Crucifer Genetics Workshop; King, G.J., Ed.; ISHS Acta Horticulturae: Wellesbourne, UK, 2000; pp. 137–143. [Google Scholar]
- Narusaka, M.; Hatakeyama, K.; Shirasu, K.; Narusaka, Y. Arabidopsis dual resistance proteins, both RPS4 and RRS1, are required for resistance to bacterial wilt in transgenic Brassica crops. Plant Signal. Behav. 2014, 9, e29130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanrar, S.; Venkateswari, J.C.; Kirti, P.B.; Chopra, V.L. Transgenic expression of hevein, the rubber tree lectin, in Indian mustard confers protection against Alternaria brassicae. Plant Sci. 2002, 162, 441–448. [Google Scholar] [CrossRef]
- Mondal, K.K.; Chatterjee, S.C.; Viswakarma, N.; Bhattacharya, R.C.; Grover, A. Chitinase-mediated inhibitory activity of Brassica transgenic on growth of Alternaria brassicae. Curr. Microbiol. 2003, 47, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Mondal, K.K.; Bhattacharya, R.C.; Koundal, K.R.; Chatterjee, S.C. Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Rep. 2007, 26, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Chhikara, S.; Chaudhury, D.; Dhankher, O.P.; Jaiwal, P.K. Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica juncea provides protection against Alternaria brassicae. PCTOC 2012, 108, 83–89. [Google Scholar] [CrossRef]
- Verma, S.S.; Yajima, W.R.; Rahman, M.H.; Shah, S.; Liu, J.J.; Ekramoddoullah, A.K.; Kav, N.N. A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). Plant Mol. Biol. 2012, 79, 61–74. [Google Scholar] [CrossRef]
- Rustagi, A.; Kumar, D.; Shekhar, S.; Yusuf, M.A.; Misra, S.; Sarin, N.B. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens. Mol. Biotech. 2014, 56, 535–545. [Google Scholar] [CrossRef]
- Kumar, D.; Shekhar, S.; Bisht, S.; Kumar, V.; Varma, A.; Kumar, M. Ectopic overexpression of lectin in transgenic Brassica juncea plants exhibit resistance to fungal phytopathogen and showed alleviation to salt and drought stress. J. Bioeng. Biomed. Sci. 2015, 5, 147. [Google Scholar] [CrossRef] [Green Version]
- Kamble, S.; Mukherjee, P.K.; Eapen, S. Expression of an endochitinase gene from Trichoderma virens confers enhanced tolerance to Alternaria blight in transgenic Brassica juncea (L.) czern and coss lines. Physiol. Mol. Biol. Plants 2016, 22, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Mir, Z.A.; Tyagi, A.; Mehari, H.; Meena, R.P.; Bhat, J.A.; Yadav, P.; Papalou, P.; Rawat, S.; Grover, A. Overexpression of NPR1 in Brassica juncea confers broad spectrum resistance to fungal pathogens. Front. Plant Sci. 2017, 8, 1693. [Google Scholar] [CrossRef] [Green Version]
- Tasleem, M.; Baunthiyal, M.; Taj, G. Induction of MPK3, MPK6 and MPK4 mediated defense signaling in response to Alternaria blight in transgenic Brassica juncea. Biosci. Biotech. Res. Asia 2017, 14, 1469–1474. [Google Scholar] [CrossRef]
- Mora, A.; Earle, E. Combination of Trichoderma harzianum endochitinase and a membrane-affecting fungicide on control of Alternaria leaf spot in transgenic broccoli plants. Appl. Microbial. Biotech. 2001, 55, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Mora, A.A.; Earle, E.D. Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene. Mol. Breed. 2001, 8, 1–9. [Google Scholar] [CrossRef]
- Munir, I.; Hussan, W.; Kazi, M.; Farhatullah, A.; Iqbal, A.; Munir, R. Production of transgenic Brassica juncea with the synthetic chitinase gene (NIC) Conferring resistance to Alternaria brassicicola. Pak. J. Bot. 2016, 48, 2063–2070. [Google Scholar]
- Ziaei, M.; Motallebi, M.; Zamani, M.R.; Panjeh, N.Z.; Jahromi, Z.M. A comparative study of transgenic canola (Brassica napus L.) harboring either chimeric or native Chit42 genes against phytopathogenic fungi. J. Plant Biochem. Biotech. 2016, 25, 358–366. [Google Scholar] [CrossRef]
- Zhang, Y.; Huai, D.; Yang, Q.; Cheng, Y.; Ma, M.; Kliebenstein, D.J.; Zhou, Y. Overexpression of three glucosinolate biosynthesis genes in Brassica napus identifies enhanced resistance to Sclerotinia sclerotiorum and Botrytis cinerea. PLoS ONE 2015, 10, e0140491. [Google Scholar] [CrossRef] [Green Version]
- Poveda, J.; Hermosa, R.; Monte, E.; Nicolás, C. The Trichoderma harzianum Kelch protein ThKEL1 plays a key role in root colonization and the induction of systemic defense in Brassicaceae plants. Front. Plant Sci. 2019, 10, 1478. [Google Scholar] [CrossRef] [Green Version]
- El-Awady, M.; Reda, E.A.M.; Haggag, W.; Sawsan, S.Y.; Ahmed, M. Transgenic canola plants over-expressing bacterial catalase exhibit enhanced resistance to Peronospora parasitica and Erysiphe polygoni. Arab. J. Biotechnol. 2008, 11, 71–84. [Google Scholar]
- Hennin, C.; Höfte, M.; Diederichsen, E. Functional expression of Cf9 and Avr9 genes in Brassica napus induces enhanced resistance to Leptosphaeria maculans. Mol. Plant-Microbe Interact. 2001, 14, 1075–1085. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fristensky, B. Transgenic canola lines expressing pea defense gene DRR206 have resistance to aggressive blackleg isolates and to Rhizoctonia solani. Mol. Breed. 2001, 8, 263–271. [Google Scholar] [CrossRef]
- Kazan, K.; Rusu, A.; Marcus, J.P.; Goulter, K.C.; Manners, J.M. Enhanced quantitative resistance to Leptosphaeria maculans conferred by expression of a novel antimicrobial peptide in canola (Brassica napus L.). Mol. Breed. 2002, 10, 63–70. [Google Scholar] [CrossRef]
- Wretblad, S.; Bohman, S.; Dixelius, C. Overexpression of a Brassica nigra cDNA gives enhanced resistance to Leptosphaeria maculans in B. napus. Molecular Plant-Microbe Interact. 2003, 16, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Sahni, S.; Prasad, B.D.; Liu, Q.; Grbic, V.; Sharpe, A.; Singh, S.P.; Krishna, P. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci. Rep. 2016, 6, 28298. [Google Scholar] [CrossRef] [PubMed]
- Akhgari, A.B.; Motallebi, M.; Zamani, M.R. Bean polygalacturonase-inhibiting protein expressed in transgenic Brassica napus inhibits polygalacturonase from its fungal pathogen Rhizoctonia solani. Plant Protect. Sci. 2012, 48, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lan, H.Y.; Wang, C.H.; Zhang, L.H.; Liu, G.Z.; Wan, L.L.; Chen, Z.H.; Tian, Y.C. Studies on transgenic oilseed rape (Brassica napus) plants transformed with beta-1, 3-glucanase and chitinase genes and its resistance to Sclerotinia sclerotiorium. Chin. J. Biotech. 2000, 16, 142–146. [Google Scholar]
- Dong, X.; Ji, R.; Guo, X.; Foster, S.J.; Chen, H.; Dong, C.; Liu, Y.; Hu, Q.; Liu, S. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 2008, 228, 331. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, H.; Dong, C.; Ji, R.; Cai, L.; Fu, H.; Liu, S. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Mol. Plant-Microbe Interact. 2009, 22, 235–244. [Google Scholar] [CrossRef]
- Wu, J.; Wu, L.T.; Liu, Z.B.; Qian, L.; Wang, M.H.; Zhou, L.R.; Yang, Y.; Li, X. A plant defensin gene from Orychophragmus violaceus can improve Brassica napus’ resistance to Sclerotinia sclerotiorum. Afri. J. Biotech. 2009, 8, 6101–6109. [Google Scholar]
- Yajima, W.; Verma, S.S.; Shah, S.; Rahman, M.H.; Liang, Y.; Kav, N.N. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot. New Biotechnol. 2010, 27, 816–821. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.; Naeem, M.S.; Liu, D.; Xu, L.; Zhang, W.; Tang, G.; Zhou, W. Transgenic Brassica napus L. lines carrying a two gene construct demonstrate enhanced resistance against Plutella xylostella and Sclerotinia sclerotiorum. PCTOC 2011, 106, 143–151. [Google Scholar] [CrossRef]
- Fan, Y.; Du, K.; Gao, Y.; Kong, Y.; Chu, C.; Sokolov, V.; Wang, Y. Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum. Russ. J. Gen. 2013, 49, 380–387. [Google Scholar] [CrossRef]
- Jiang, Y.; Fu, X.; Wen, M.; Wang, F.; Tang, Q.; Tian, Q.; Luo, K. Overexpression of an nsLTPs-like antimicrobial protein gene (LJAMP2) from motherwort (Leonurus japonicus) enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Physiol. Mol. Plant Pathol. 2013, 82, 81–87. [Google Scholar] [CrossRef]
- Sang, X.; Jue, D.; Yang, L.; Bai, X.; Chen, M.; Yang, Q. Genetic transformation of Brassica napus with MSI-99m gene increases resistance in transgenic plants to Sclerotinia sclerotiorum. Mol. Plant Breed. 2013, 4, 247–253. [Google Scholar] [CrossRef]
- Kheiri, H.R.; Motallebi, M.; Zamani, M.R.; Deljo, A. Beta glucanase (Bgn13. 1) expressed in transgenic Brassica napus confers antifungal activity against Sclerotinia sclerotiorum. J. Crop Protect. 2014, 3, 31–42. [Google Scholar]
- Wang, Z.; Fang, H.; Chen, Y.; Chen, K.; Li, G.; Gu, S.; Tan, X. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Mol. Plant Pathol. 2014, 15, 677–689. [Google Scholar] [CrossRef]
- Moradyar, M.; Motallebi, M.; Zamani, M.R.; Aghazadeh, R. Pathogen-induced expression of chimeric chitinase gene containing synthetic promoter confers antifungal resistance in transgenic canola. In Vitro Cell. Dev. Biol. Plant 2016, 52, 119–129. [Google Scholar] [CrossRef]
- Zarinpanjeh, N.; Motallebi, M.; Zamani, M.R.; Ziaei, M. Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes. J. Appl. Genet. 2016, 57, 417–425. [Google Scholar] [CrossRef]
- Ziaei, M.; Motallebi, M.; Zamani, M.R.; Panjeh, N.Z. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum. Biotechnol. Lett. 2016, 38, 1021–1032. [Google Scholar] [CrossRef]
- Wang, Z.; Wan, L.; Xin, Q.; Chen, Y.; Zhang, X.; Dong, F.; Hong, D.; Yang, G. Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms. J. Exp. Bot. 2018, 69, 3141–3155. [Google Scholar] [CrossRef]
- Ding, L.; Li, M.; Guo, X.; Tang, M.; Cao, J.; Wang, Z.; Liu, R.; Zhu, K.; Guo, L.; Liu, S.; et al. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. Plant Biotechnol. J. 2020, 18, 1255–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhang, W.H.; Ma, L.Y.; Li, X.; Zhao, F.Y.; Tan, X.L. Overexpression of Brassica napus NPR1 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Physiol. Mol. Plant Pathol. 2020, 110, 101460. [Google Scholar] [CrossRef]
- Ahmad, B.; Ambreen, M.S.K.A.H.; Khan, I. Agrobacterium mediated transformation of Brassica juncea (L.) Czern. with chitinase gene conferring resistance against fungal infections. Pak. J. Bot. 2015, 47, 211–216. [Google Scholar]
- Borhan, M.H.; Holub, E.B.; Kindrachuk, C.; Omidi, M.; Bozorgmanesh-Frad, G.A.; Rimmer, S.R. WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed brassica crops. Mol. Plant Pathol. 2010, 11, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Gopal, M.; Shukla, L.; Mahajan, V.K. Comparative study of nematode population in the rhizosphere of Bt-transgenic cabbage and non transgenic cabbage (Brassica oleracea var. capitata). Int. J. Agric. Environ. Biotech. 2012, 5, 145–149. [Google Scholar]
- Zhong, X.; Zhou, Q.; Cui, N.; Cai, D.; Tang, G. BvcZR3 and BvHs1pro-1 genes pyramiding enhanced beet cyst nematode (Heterodera schachtii Schm.) resistance in oilseed rape (Brassica napus L.). Int. J. Mol. Sci. 2019, 20, 1740. [Google Scholar] [CrossRef] [Green Version]
- Simoh, S.; Linthorst, H.J.; Lefeber, A.W.; Erkelens, C.; Kim, H.K.; Choi, Y.H.; Verpoorte, R. Metabolic changes of Brassica rapa transformed with a bacterial isochorismate synthase gene. J. Plant Physiol. 2010, 167, 1525–1532. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, N.; Kabadwal, B.C.; Tewari, A.K.; Kumar, J. Review on plant-Trichoderma-pathogen interaction. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2382–2397. [Google Scholar] [CrossRef]
- Osusky, M.; Zhou, G.; Osuska, L.; Hancock, R.E.; Kay, W.W.; Misra, S. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat. Biotechnol. 2000, 18, 1162–1166. [Google Scholar] [CrossRef]
- Poveda, J. Use of plant-defense hormones against pathogen-diseases of postharvest fresh produce. Physiol. Mol. Plant Pathol. 2020, 111, 101521. [Google Scholar] [CrossRef]
- Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY transcription factors. Trends Plant Sci. 2010, 15, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Detchemendy, T.W.; Pajerowska-Mukhtar, K.M.; Mukhtar, M.S. NPR1 in JazzSet with pathogen effectors. Trends Plant Sci. 2018, 23, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Jami, S.K.; Clark, G.B.; Turlapati, S.A.; Handley, C.; Roux, S.J.; Kirti, P.B. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiol. Biochem. 2008, 46, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Sadumpati, V.; Kalambur, M.; Vudem, D.R.; Kirti, P.B.; Khareedu, V.R. Transgenic indica rice lines, expressing Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1), exhibit enhanced resistance to major pathogens. J. Biotechnol. 2013, 166, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kim, J.; Abdula, S.E.; Jung, Y.J.; Kang, K.K.; Nou, I.; Cho, Y.G. Enhancement of rice resistance to bacterial blight by overexpressing BrCP3 gene of Brassica rapa. Plant Breed. Biotechnol. 2015, 3, 355–365. [Google Scholar]
- Sundaresha, S.; Rohini, S.; Appanna, V.K.; Arthikala, M.-K.; Shanmugam, N.B.; Shashibhushan, N.B.; Kishore, C.M.H.; Pannerselvam, R.; Kirti, P.B.; Udayakumar, M. Co-overexpression of Brassica juncea NPR1 (BjNPR1) and Trigonella foenum-graecum defensin (Tfgd) in transgenic peanut provides comprehensive but varied protection against Aspergillus flavus and Cercospora arachidicola. Plant Cell Rep. 2016, 35, 1189–1203. [Google Scholar] [CrossRef]
- Shin, Y.H.; Lee, S.H.; Park, Y.D. Development of mite (Tetranychus urticae)-resistant transgenic Chinese cabbage using plant-mediated RNA interference. Hortic. Environ. Biotechnol. 2020, 61, 305–315. [Google Scholar] [CrossRef]
- Kanrar, S.; Venkateswari, J.; Kirti, P.; Chopra, V. Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep. 2002, 20, 976–981. [Google Scholar] [CrossRef]
- Dutta, I.; Majumder, P.; Saha, P.; Ray, K.; Das, S. Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Sci. 2005, 169, 996–1007. [Google Scholar] [CrossRef]
- Hossain, M.A.; Maiti, M.K.; Basu, A.; Sen, S.; Ghosh, A.K.; Sen, S.K. Transgenic expression of onion leaf lectin gene in Indian mustard offers protection against aphid colonization. Crop Sci. 2006, 46, 2022–2032. [Google Scholar] [CrossRef]
- Verma, S.S.; Sinha, R.K.; Jajoo, A. (E)-β-farnesene gene reduces Lipaphis erysimi colonization in transgenic Brassica juncea lines. Plant Signal. Behav. 2015, 10, e1042636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rani, S.; Sharma, V.; Hada, A.; Bhattacharya, R.C.; Koundal, K.R. Fusion gene construct preparation with lectin and protease inhibitor genes against aphids and efficient genetic transformation of Brassica juncea using cotyledons explants. Acta Physiol. Plant. 2017, 39, 115. [Google Scholar] [CrossRef]
- Sarkar, P.; Jana, K.; Sikdar, S.R. Overexpression of biologically safe Rorippa indica defensin enhances aphid tolerance in Brassica juncea. Planta 2017, 246, 1029–1044. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Gangopadhyay, G.; Sikdar, S.R. RiHSPRO2, a nematode resistance protein-like homolog from a wild crucifer Rorippa indica (L.) Hiern, is a promising candidate to control mustard aphid Lipaphis erysimi. Arthropod-Plant Interact. 2018, 12, 701–714. [Google Scholar] [CrossRef]
- Bose, S.; Gangopadhyay, G.; Sikdar, S.R. Rorippa indica HSPRO2 expression in transgenic Brassica juncea induces tolerance against mustard aphid Lipaphis erysimi. PCTOC 2019, 136, 431–443. [Google Scholar] [CrossRef]
- Le, Y.T.; Stewart, C.N., Jr.; Shi, H.; Wei, W.; Mi, X.C.; Ma, K.P. Expression of Bt cry1Ac in transgenic oilseed rape in China and transgenic performance of intraspecific hybrids against Helicoverpa armigera larvae. Ann. Appl. Biol. 2007, 150, 141–147. [Google Scholar] [CrossRef]
- Liu, Y.B.; Darmency, H.; Stewart, C.N.; Wei, W.; Tang, Z.X.; Ma, K.P. The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea. Transgenic Res. 2015, 24, 537–547. [Google Scholar] [CrossRef]
- Halfhill, M.D.; Richards, H.A.; Mabon, S.A.; Stewart, C.N. Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor. Appl. Genet. 2001, 103, 659–667. [Google Scholar] [CrossRef]
- Cho, H.S.; Cao, J.; Ren, J.P.; Earle, E.D. Control of Lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene. Plant Cell Rep. 2001, 20, 1–7. [Google Scholar] [CrossRef]
- Yang, G.D.; Zhu, Z.; Li, Y.; Zhu, Z.J.; Xiao, G.F.; Wei, X.L. Obtaining transgenic plants of Chinese cabbage resistant to Pieris rapae L. with modified CpTI gene (sck). Acta Hortic. Sin. 2002, 29, 224–228. [Google Scholar]
- Damgaard, C.; Kjær, C. Competitive interactions and the effect of herbivory on Bt-Brassica napus, Brassica rapa and Lolium perenne. J. Appl. Ecol. 2009, 46, 1073–1079. [Google Scholar] [CrossRef]
- Kim, Y.J.; Moon, D.B.; Nam, K.J.; Lee, J.H.; Harn, C.H.; Kim, C.G. Effects of transgenic cabbage expressing Cry1Ac1 protein on target pests and the non-target arthropod community under field conditions. J. Asia-Pac. Entomol. 2015, 18, 657–668. [Google Scholar] [CrossRef]
- Yi, D.; Yang, W.; Tang, J.; Wang, L.; Fang, Z.; Liu, Y.; Zhuang, M.; Zhang, Y.; Yang, L. High resistance of transgenic cabbage plants with a synthetic cry1Ia8 gene from Bacillus thuringiensis against two lepidopteran species under field conditions. Pest Manag. Sci. 2015, 72, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.G.; Liu, Y.B.; Tabashnik, B.E.; Borthakur, D. Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation. In Vitro Cell. Dev. Biol.-Plant 2000, 36, 231–237. [Google Scholar] [CrossRef]
- Xiang, Y.; Wong, W.K.; Ma, M.C.; Wong, R.S.C. Agrobacterium-mediated transformation of Brassica campestris ssp. parachinensis with synthetic Bacillus thuringiensis cry1Ab and cry1Ac genes. Plant Cell Rep. 2000, 19, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Shelton, A.M.; Earle, E.D. Gene expression and insect resistance in transgenic broccoli containing a Bacillus thuringiensis cry1Ab gene with the chemically inducible PR-1a promoter. Mol. Breed. 2001, 8, 207–216. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Viswakarma, N.; Bhat, S.R.; Kirti, P.B.; Singh, B.D.; Chopra, V.L. Agrobacterium-mediated transformation of cauliflower: Optimization of protocol and development of Bt-transgenic cauliflower. J. Biosci. 2002, 27, 495–502. [Google Scholar] [CrossRef]
- Mason, P.; Braun, L.; Warwick, S.I.; Zhu, B.; Stewart Jr, C.N. Transgenic Bt-producing Brassica napus: Plutella xylostella selection pressure and fitness of weedy relatives. Environ. Biosaf. Res. 2003, 2, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Viswakarma, N.; Bhattacharya, R.C.; Chakrabarty, R.; Bhat, S.R.; Kirti, P.B.; Shastri, N.V.; Chopra, V.L. Insect resistance of transgenic broccoli (‘Pusa Broccoli KTS-1’) expressing a synthetic cryIA (b) gene. J. Hortic. Sci. Biotechnol. 2004, 79, 182–188. [Google Scholar] [CrossRef]
- Cao, J.; Shelton, A.M.; Earle, E.D. Development of transgenic collards (Brassica oleracea L., var. acephala) expressing a cry1Ac or cry1C Bt gene for control of the diamondback moth. Crop Protect. 2005, 24, 804–813. [Google Scholar] [CrossRef]
- Paul, A.; Sharma, S.R.; Sresty, T.V.; Devi, S.; Bala, S.; Kumar, P.S.; Saradhi, P.P.; Frutos, R.; Altosaar, I.; Kumar, P.A. Transgenic cabbage (Brassica oleracea var. capitata) resistant to Diamondback moth (Plutella xylostella). IJBT 2005, 4, 72–77. [Google Scholar]
- Wang, J.; Chen, Z.; Du, J.; Sun, Y.; Liang, A. Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Plant Cell Rep. 2005, 24, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.S.; Halfhill, M.D.; Good, L.L.; Raymer, P.L.; Stewart, C.N. Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac and gfp genes. Plant Cell Rep. 2007, 26, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Shelton, A.M.; Earle, E.D. Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae. Plant Cell Rep. 2008, 27, 479. [Google Scholar] [CrossRef]
- Himanen, S.J.; Nissinen, A.; Auriola, S.; Poppy, G.M.; Stewart, C.N.; Holopainen, J.K.; Nerg, A.M. Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3. Planta 2008, 227, 427. [Google Scholar] [CrossRef]
- Liu, C.W.; Lin, C.C.; Yiu, J.C.; Chen, J.J.; Tseng, M.J. Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor. Appl. Genet. 2008, 117, 75–88. [Google Scholar] [CrossRef]
- Shelton, A.M.; Hatch, S.L.; Zhao, J.Z.; Chen, M.; Earle, E.D.; Cao, J. Suppression of diamondback moth using Bt-transgenic plants as a trap crop. Crop Protect. 2008, 27, 403–409. [Google Scholar] [CrossRef]
- Himanen, S.J.; Nerg, A.M.; Nissinen, A.; Stewart, C.N., Jr.; Poppy, G.M.; Holopainen, J.K. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent. Environ. Pollut. 2009, 157, 181–185. [Google Scholar] [CrossRef]
- Yi, D.X.; Cui, L.; Liu, Y.M.; Zhuang, M.; Zhang, Y.Y.; Fang, Z.Y.; Yang, L.M. Transformation of cabbage (Brassica oleracea L. var. capitata) with Bt cry1Ba3 gene for control of diamondback moth. Agric. Sci. China 2011, 10, 1693–1700. [Google Scholar] [CrossRef]
- Kamble, S.; Hadapad, A.B.; Eapen, S. Evaluation of transgenic lines of Indian mustard (Brassica juncea L. Czern and Coss) expressing synthetic cry1Ac gene for resistance to Plutella xylostella. PCTOC 2013, 115, 321–328. [Google Scholar] [CrossRef]
- Qiu, L.; Wu, T.; Dong, H.; Wu, L.; Cao, J.; Huang, L. High-level expression of sporamin in transgenic Chinese cabbage enhances resistance against diamondback moth. Plant Mol. Biol. Rep. 2013, 31, 657–664. [Google Scholar] [CrossRef]
- Yi, D.; Cui, L.; Wang, L.; Liu, Y.; Zhuang, M.; Zhang, Y.; Zhang, J.; Lang, Z.; Zhang, Z.; Fang, Z.; et al. Pyramiding of Bt cry1Ia8 and cry1Ba3 genes into cabbage (Brassica oleracea L. var. capitata) confers effective control against diamondback moth. PCTOC 2013, 115, 419–428. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, F.; Liu, C.; Liu, K. Development of transgenic Brassica napus with an optimized cry1C* gene for resistance to diamondback moth (Plutella xylostella). Can. J. Plant Sci. 2014, 94, 1501–1506. [Google Scholar] [CrossRef]
- Sagers, C.L.; Londo, J.P.; Bautista, N.; Lee, E.H.; Watrud, L.S.; King, G. Benefits of transgenic insect resistance in Brassica hybrids under selection. Agronomy 2015, 5, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Yi, D.; Fang, Z.; Yang, L. Expression and inheritance of Bt cry1Ia8 gene in transgenic cabbage to control Plutella xylostella. Sci. Hortic. 2017, 225, 533–538. [Google Scholar] [CrossRef]
- Kumar, P.; Gambhir, G.; Gaur, A.; Sharma, K.C.; Thakur, A.K.; Srivastava, D.K. Development of transgenic broccoli with cryIAa gene for resistance against diamondback moth (Plutella xylostella). 3 Biotech 2018, 8, 299. [Google Scholar] [CrossRef]
- Vacher, C.; Weis, A.E.; Hermann, D.; Kossler, T.; Young, C.; Hochberg, M.E. Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theor. Appl. Genet. 2004, 109, 806–814. [Google Scholar] [CrossRef]
- Zhu, B.; Lawrence, J.R.; Warwick, S.I.; Mason, P.; Braun, L.; Halfhill, M.D.; Stewart Jr, C.N. Stable Bacillus thuringiensis (Bt) toxin content in interspecific F1 and backcross populations of wild Brassica rapa after Bt gene transfer. Mol. Ecol. 2004, 13, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Halfhill, M.D.; Sutherland, J.P.; Moon, H.S.; Poppy, G.M.; Warwick, S.I.; Weissinger, A.K.; Rufty, T.W.; Raymer, P.L.; Stewart, C.N. Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes. Mol. Ecol. 2005, 14, 3177–3189. [Google Scholar] [CrossRef]
- Kumar, P.; Gaur, A.; Srivastava, D.K. Agrobacterium-mediated insect resistance gene (cry1Aa) transfer studies pertaining to antibiotic sensitivity on cultured tissues of broccoli. Int. J. Veg. Sci. 2017, 23, 523–535. [Google Scholar] [CrossRef]
- Vandenborre, G.; Smagghe, G.; Van Damme, E.J. Plant lectins as defense proteins against phytophagous insects. Phytochem. 2011, 72, 1538–1550. [Google Scholar] [CrossRef] [PubMed]
- Nagpure, A.; Choudhary, B.; Gupta, R.K. Chitinases: In agriculture and human healthcare. Crit. Rev. Biotechnol. 2014, 34, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Van Rie, J.; Jansens, S. Midgut-transgenic crops expressing Bacillus thuringiensis Cry proteins. Modern Crop Prot. Compd. 2019, 3, 1103–1136. [Google Scholar]
- Mandal, A.; Sarkar, B.; Owens, G.; Thakur, J.K.; Manna, M.C.; Niazi, N.K.; Jayaraman, S.; Patra, A.K. Impact of genetically modified crops on rhizosphere microorganisms and processes: A review focusing on Bt cotton. Appl. Soil Ecol. 2017, 148, 103492. [Google Scholar] [CrossRef]
- Khan, M.S.; Sadat, S.U.; Jan, A.; Munir, I. Impact of transgenic Brassica napus harboring the antifungal synthetic chitinase (NiC) gene on rhizosphere microbial diversity and enzyme activities. Front. Plant Sci. 2017, 8, 1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, T.; Chen, G.; Liu, F.; Bu, C.; Liu, L.; Zhao, X. Effects of transgenic glufosinate-tolerant rapeseed (Brassica napus L.) and the associated herbicide application on rhizospheric bacterial communities. Physiol. Mol. Plant Pathol. 2019, 106, 246–252. [Google Scholar] [CrossRef]
- Farwell, A.J.; Vesely, S.; Nero, V.; Rodriguez, H.; Shah, S.; Dixon, D.G.; Glick, B.R. The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 2006, 288, 309–318. [Google Scholar] [CrossRef]
- Farwell, A.J.; Vesely, S.; Nero, V.; Rodriguez, H.; McCormack, K.; Shah, S.; Dixon, D.G.; Glick, B.R. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ. Pollut. 2007, 147, 540–545. [Google Scholar] [CrossRef]
- Poveda, J.; Hermosa, R.; Monte, E.; Nicolás, C. Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Poveda, J. Trichoderma parareesei favors the tolerance of rapeseed (Brassica napus L.) to salinity and drought due to a chorismate mutase. Agronomy 2020, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Romeis, J.; Meissle, M. Stacked Bt Proteins Pose No New Risks to Nontarget Arthropods. Trend Biotechnol. 2020, 38, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Krogh, P.H.; Kostov, K.; Damgaard, C.F. The effect of Bt crops on soil invertebrates: A systematic review and quantitative meta-analysis. Transgenic Res. 2020, 29, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Manachini, B.; Bazan, G.; Schicchi, R. Potential impact of genetically modified Lepidoptera-resistant Brassica napus in biodiversity hotspots: Sicily as a theoretical model. Insect Sci. 2018, 25, 562–580. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, H.; Lee, S.; Lee, S.H. Effects of Bt transgenic Chinese cabbage pollen expressing Bacillus thuringiensis Cry1Ac toxin on the non-target insect Bombyx mori (Lepidoptera: Bombyxidae) larvae. J. Asia-Pac. Entomol. 2008, 11, 107–110. [Google Scholar] [CrossRef]
- Lehrman, A. Does pea lectin expressed transgenically in oilseed rape (Brassica napus) influence honey bee (Apis mellifera) larvae? Environ. Biosaf. Res. 2007, 6, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Lee, J.H.; Harn, C.H.; Kim, C.G. Transgenic cabbage expressing Cry1Ac1 does not affect the survival and growth of the wolf spider, Pardosa astrigera L. Koch (Araneae: Lycosidae). PLoS ONE 2016, 11, e0153395. [Google Scholar] [CrossRef] [Green Version]
Pathogen | Brassica Species | Gene | Mechanism | Reference | |||
---|---|---|---|---|---|---|---|
Group | Species | Name | Protein | Origin | |||
Viruses | Turnip Mosaic Virus | B. napus | CP | Coat protein | Turnip Mosaic Virus | RNA silencing mechanism | [41] |
Bacteria | Pectobacterium carotovorum ssp. carotovorum | B. rapa ssp. pekinensis | - | Anti-bacterial peptide | Not indicated | Bacteriostasis action | [42] |
B. rapa ssp. pekinensis | BAA1 | Bromelain 1 | Pineapple | Plant programmed cell death | [43] | ||
B. rapa ssp. pekinensis | PinII | Proteinase inhibitor II | Potato | Inhibition of bacterial cell communication. | [44] | ||
B. rapa ssp. pekinensis | BrPGIP2 | Polygalacturonase-inhibiting protein 2 | B. rapa ssp. pekinensis | Inhibition of bacterial polygalacturones | [45] | ||
Xanthomonas campestris pv. campestris | B. oleracea var. botrytis | - | Cecropin B | Antheraea polyphemus | Lyse bacterial cell membranes | [46] | |
- | Magainin II | Xenopus laevis | Disruption of microbe membranes | ||||
Ralstonia solanacearum | B. rapa | RRS1 | R. solanacearum resistance protein 1 | Arabidopsis thaliana | Activation of defensive response by JA/ET route | [47] | |
RPS4 | Pseudomonas syringae resistance protein 4 | ||||||
Fungi | Alternaria brassicae | B. juncea | - | Lectin | Hevea brasiliensis | Fungal cell wall carbohydrate binding (immobilization) | [48] |
B. juncea | - | Class I chitinase | Tobacco | Fungal cell wall degradation | [49] | ||
B. juncea | - | Class I basic glucanase | Tomato | Fungal cell wall degradation | [50] | ||
B. juncea | - | Class II chitinase | Barley | Fungal cell wall degradation | [51] | ||
RIP | Ribosome inactivating protein | Inactivation of foreign ribosomes in distantly related species and in other eukaryotes, including fungi | |||||
B. napus | PmAMP1 | Cysteine rich antimicrobial peptide 1 | Pinus monticola | Unidentified | [52] | ||
B. juncea | MsrA1 | Cecropin–melittin cationic peptide | - | Powerful membrane antagonism | [53] | ||
B. juncea | - | Lectin | Chickpea | Fungal cell wall carbohydrate binding (immobilization) | [54] | ||
B. juncea | ech42 | Endochitinase 42 | Trichoderma virens | Fungal cell wall degradation | [55] | ||
B. juncea | NPR1 | Non-expressor of pathogenesis-related | B. juncea | Activation of the SA-mediated plant-defense | [56] | ||
B. juncea | MPK3 | Mitogen-activated protein kinase 3 | B. juncea | Activation of the SA-mediated plant-defense | [57] | ||
A. brassicicola | B. oleracea var. italica | - | Endochitinase | Trichoderma harzianum | Fungal cell wall degradation | [58,59] | |
B. juncea | ech42 | Endochitinase 42 | Trichoderma virens | Fungal cell wall degradation | [55] | ||
B. juncea | NIC | Synthetic chitinase | - | Fungal cell wall degradation | [60] | ||
A. solani | B. napus | Chit42 | Endochitinase 42 | Trichoderma atroviride | Fungal cell wall degradation | [61] | |
Botrytis cinerea | B. napus | MAM1 | Methylthioalkylmalate synthase 1 | B. napus | Glucosinolate biosynthesis | [62] | |
CYP83A1 | Cytochrome P450 83A1 | ||||||
UGT74B1 | Glucosyltransferase 74B1 | ||||||
Erysiphe polygoni | B. napus | katE | Catalase E | Escherichia coli | Control of the activation of plant defense responses through the H2O2 dismutation | [63] | |
B. juncea | NPR1 | Non-expressor of pathogenesis-related | B. juncea | Activation of the SA-mediated plant-defense | [56] | ||
Fusarium oxysporum | B. napus | Chit42 | Endochitinase 42 | Trichoderma atroviride | Fungal cell wall degradation | [61] | |
Leptosphaeria maculans | B. napus | Cf9 | Cladosporium fulvum resistance protein 9 | Tomato | Hypersensitive response activation | [64] | |
Avr9 | Dominant pathogen avirulence protein 9 | Tomato | Hypersensitive response activation | ||||
B. napus | DRR206 | Dirigent protein | Pisum sativum | Unidentified | [65] | ||
B. napus | MiAMP1 | Antimicrobial peptide 1 | Macadamia integrifolia | Powerful membrane antagonism | [66] | ||
B. napus | Lm1 | L. maculans 1 | B. nigra | Unidentified | [67] | ||
B. napus | PmAMP1 | Cysteine rich antimicrobial peptide 1 | Pinus monticola | Unidentified | [52] | ||
B. napus | DWF4 | C-22 hydroxylase | A. thaliana | Brassinosteroids biosynthesis | [68] | ||
B. napus | Thkel1 | Kelch domain protein | Trichoderma harzianum | β-glucosidase activity | [69] | ||
Peronospora parasitica | B. napus | katE | Catalase E | E. coli | Control of the activation of plant defense responses through theH2O2 dismutation | [63] | |
Rhizoctonia solani | B. napus | DRR206 | Dirigent protein | P. sativum | Unidentified | [65] | |
B. napus | pgip2 | Polygalacturonase-inhibiting protein 2 | Proteus vulgaris | Inhibition of fungal endo-polygalacturones | [70] | ||
B. napus | Chit42 | Endochitinase 42 | Trichoderma atroviride | Fungal cell wall degradation | [61] | ||
Sclerotinia sclerotiorum | B. napus | - | Chitinase | B. napus | Fungal cell wall degradation | [71] | |
- | Beta-1,3-glucanase | B. napus | Fungal cell wall degradation | ||||
B. napus | DRR206 | Dirigent protein | P. sativum | Unidentified | [65] | ||
B. napus | OXO | Oxalate oxidase | Wheat | Breakdown of the oxalic acid produced by the fungus. | [72] | ||
B. napus | MPK4 | Mitogen-activated protein kinase 4 | B. napus | Activation of the JA-mediated plant-defense | [73] | ||
B. napus | Ovd | Defensin | Orychophragmus violaceus | Permeabilization of fungal membranes | [74] | ||
B. napus | scFv | S. sclerotiorum antibody | S. sclerotiorum | Binding to the cell wall (immobilization, activation of plant defenses, etc.) | [75] | ||
B. napus | PjChi-1 | Chitinase 1 | Paecilomyces javanicus | Fungal cell wall degradation | [76] | ||
- | Sporamin | Sweet potato | Proteases inhibition | ||||
B. napus | PmAMP1 | Cysteine rich antimicrobial peptide 1 | Pinus monticola | Unidentified | [52] | ||
B. napus | LTP | Lipid transfer protein | Oryza sativa | Powerful membrane antagonism | [77] | ||
B. napus | LJAMP2 | nsLTPs-like antimicrobial protein | Leonurus japonicus | Powerful membrane antagonism | [78] | ||
B. napus | MSI-99m | Magainin II analogue | Xenopus laevis | Powerful membrane antagonism | [79] | ||
B. napus | bgn13.1 | β-1,3-glucanase | Trichoderma virens | Fungal cell wall degradation | [80] | ||
B. juncea | MsrA1 | Cecropin–melittin cationic peptide | - | Powerful membrane antagonism | [53] | ||
B. napus | WRKY33 | Protein containing WRKY zinc-finger motifs 33 | B. napus | Activation of the SA- and JA-mediated plant-defense | [81] | ||
B. napus | Chit42 | Endochitinase 42 | Trichoderma atroviride | Fungal cell wall degradation | [82] | ||
B. napus | Chit42 | Endochitinase 42 | Trichoderma atroviride | Fungal cell wall degradation | [83] | ||
- | Defensin | Raphanus sativus | Permeabilization of fungal membranes | ||||
B. napus | Chit42 | Endochitinase 42 | Trichoderma atroviride | Fungal cell wall degradation | [61] | ||
B. napus | Chit42 | Endochitinase 42 | Trichoderma atroviride | Fungal cell wall degradation | [84] | ||
PG1P2 | Polygalacturonase-inhibiting protein 2 | P. vulgaris | Inhibition of fungal endo-polygalacturones | ||||
B. napus | OsPGIP2 | Polygalacturonase-inhibiting protein 2 | O. sativa | Inhibition of fungal endo-polygalacturones | [85] | ||
B. napus | GDSL1 | GDSL lipase | A. thaliana | Release of phosphatidic acid from fungal cell membrane and activation of plant defenses | [86] | ||
B. napus | NPR1 | Non-expressor of pathogenesis-related | B. napus | Activation of the SA-mediated plant-defense | [87] | ||
Verticillium dahlia | B. napus | Chit42 | Endochitinase 42 | Trichoderma atroviride | Fungal cell wall degradation | [61] | |
- | B. juncea | ChiC | Chitinase C | Streptomyces griseus | Fungal cell wall degradation | [88] | |
Oomycetes | Albugo candida | B. napus | WRR4 | TIR-NB-LRR protein | A. thaliana | Activation of defensive response by JA/ET route | [89] |
Nematodes | Rotylenchulus sp. | B. oleracea var. capitata | Bt | δ-endotoxin | Bacillus thuringiensis | Intestinal toxicity for consumption | [90] |
Heterodera schachtii | B. napus | Hs1pro-1 | Heterodera schachtii resistance protein | Beta procumbens | Activation of a nematode-responsive and feeding site-specific gene expression | [91] | |
cZR3 | CC-NBS-LRR resistance protein | Necrotic hypersensitive response | |||||
Necrotrophic pathogens | - | B. rapa ssp. oleifera | entC | Isochorismate synthase | E. coli | SA biosynthesis | [92] |
Pest | Brassica Species | Gene | Mechanism | Reference | |||
---|---|---|---|---|---|---|---|
Group | Species | Name | Protein | Origin | |||
Insects-Hemiptera | Lipaphis erysimi | B. juncea | WGA | Wheat germ agglutinin | Wheat | Not indicated | [103] |
B. juncea | ASAL | Leaf agglutinin | Allium sativum | Blockage of the insect gut epithelial membrane | [104] | ||
B. juncea | ACA | Agglutinin | Allium cepa | Blockage of the insect gut epithelial membrane | [105] | ||
B. juncea | Ebf | (E)-β-farnesene | Myzus arvensis | Volatile sesquiterpene compound acting as the main component of aphid alarm pheromones | [106] | ||
B. juncea | LL | Lentil lectin | Lentil | Blockage of the insect gut epithelial membrane | [107] | ||
CPPI | Chickpea protease inhibitor | Chickpea | Disruption in assimilation of dietary protein | ||||
B. juncea | RiD | Defensin | Rorippa indica | Inhibition of nutrient uptake | [108] | ||
B. juncea | HSPRO2 | Nematode resistance protein-like homolog | R. indica | Activation of basal plant resistance | [109,110] | ||
Insects-Lepidoptera | Helicoverpa armigera | B. napus | cry1Ac | Cry1Ac protein | Bacillus thuringiensis | Lysis of the gut epithelial cells | [111] |
B. juncea | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [112] | ||
Helicoverpa zea | B. napus | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [113] | |
Pieris rapae | B. rapa ssp. pekinensis | cry1C | Cry1C protein | B. thuringiensis | Lysis of the gut epithelial cells | [114] | |
B. rapa subsp. pekinensis | CpTI | Cowpea trypsin inhibitor | Vigna unguiculata | Inhibition of insect digestive activity | [115] | ||
B. napus | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [116] | ||
B. oleracea var. capitata | cry1Ac1 | Cry1Ac1 protein | B. thuringiensis | Lysis of the gut epithelial cells | [117] | ||
B. oleracea var. capitata | cry1Ia8 | Cry1Ia8 protein | B. thuringiensis | Lysis of the gut epithelial cells | [118] | ||
Plutella xylostella | B. oleracea var. capitata | cry1Ab3 | Cry1Ab3 protein | B. thuringiensis | Lysis of the gut epithelial cells | [119] | |
B. rapa ssp. pekinensis | cry1Ab and cry1Ac | Cry1Ab and Cry1Ac proteins | B. thuringiensis | Lysis of the gut epithelial cells | [120] | ||
Brassica oleracea var.italica | cry1Ab | Cry1Ab protein | B. thuringiensis | Lysis of the gut epithelial cells | [121] | ||
B. rapa ssp. pekinensis | cry1C | Cry1C protein | B. thuringiensis | Lysis of the gut epithelial cells | [114] | ||
B. oleracea var. botrytis | cryIA(b) | CryIA(b) protein | B. thuringiensis | Lysis of the gut epithelial cells | [122] | ||
B. napus | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [123] | ||
B. oleracea var.italica | cryIA(b) | CryIA(b) protein | B. thuringiensis | Lysis of the gut epithelial cells | [124] | ||
B. oleracea var. acephala | cry1Ac and cry1C | Cry1Ac and Cry1C proteins | B. thuringiensis | Lysis of the gut epithelial cells | [125] | ||
B. oleracea var. capitata | cry1B and cry1Ab | Cry1B and Cry1Ab proteins | B. thuringiensis | Lysis of the gut epithelial cells | [126] | ||
B. napus | Chi | Chitinase | Manduca sexta | Cuticle degradation | [127] | ||
BmkIT | Insect-specific neurotoxin | Buthus martensii | Neurotoxin of contractive paralysis type | ||||
B. juncea | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [128] | ||
B. juncea | cry1Ac and cry1C | Cry1Ac and Cry1C proteins | B. thuringiensis | Lysis of the gut epithelial cells | [129] | ||
B. napus | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [130] | ||
B. oleracea var. capitata | cry1Ab | Cry1Ab protein | B. thuringiensis | Lysis of the gut epithelial cells | [131] | ||
B. juncea | cry1C | Cry1C protein | B. thuringiensis | Lysis of the gut epithelial cells | [132] | ||
B. napus | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [133] | ||
B. napus | PjChi-1 | Chitinase 1 | Paecilomyces javanicus | Cuticle degradation | [76] | ||
- | Sporamin | Sweet potato | Proteases inhibition | ||||
B. oleracea var. capitata | cry1Ba3 | Cry1Ba3 protein | B. thuringiensis | Lysis of the gut epithelial cells | [134] | ||
B. juncea | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [135] | ||
B. rapa subsp. pekinensis | - | Sporamin | Sweet potato | Disruption in assimilation of dietary protein | [136] | ||
B. oleracea var. capitata | cry1Ia8 and cry1Ba3 | Cry1Ia8 and Cry1Ba3 proteins | B. thuringiensis | Lysis of the gut epithelial cells | [137] | ||
B. napus | cry1C* | Cry1C* protein | B. thuringiensis | Lysis of the gut epithelial cells | [138] | ||
B. oleracea var. capitata | cry1Ac1 | Cry1Ac1 protein | B. thuringiensis | Lysis of the gut epithelial cells | [117] | ||
B. napus | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [139] | ||
B. oleracea var. capitata | cry1Ia8 | Cry1Ia8 protein | B. thuringiensis | Lysis of the gut epithelial cells | [118] | ||
B. oleracea var. capitata | cry1Ia8 | Cry1Ia8 protein | B. thuringiensis | Lysis of the gut epithelial cells | [140] | ||
Brassica oleracea var.italica | cryIAa | CryIAa protein | B. thuringiensis | Lysis of the gut epithelial cells | [141] | ||
Trichoplusia ni | B. rapa ssp. pekinensis | cry1C | Cry1C protein | B. thuringiensis | Lysis of the gut epithelial cells | [114] | |
B. rapa | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [142] | ||
Not indicated | B. napus | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [143] | |
B. napus | cry1Ac | Cry1Ac protein | B. thuringiensis | Lysis of the gut epithelial cells | [144] | ||
B. oleracea var.italica | cry1Aa | Cry1Aa protein | B. thuringiensis | Lysis of the gut epithelial cells | [145] | ||
Arachnids-Mites | Tetranychus urticae | B. rapa subsp. pekinensis | COPB2 | Coatomer protein complex subunit 2 | T. urticae | RNA silencing mechanism | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poveda, J.; Francisco, M.; Cartea, M.E.; Velasco, P. Development of Transgenic Brassica Crops against Biotic Stresses Caused by Pathogens and Arthropod Pests. Plants 2020, 9, 1664. https://doi.org/10.3390/plants9121664
Poveda J, Francisco M, Cartea ME, Velasco P. Development of Transgenic Brassica Crops against Biotic Stresses Caused by Pathogens and Arthropod Pests. Plants. 2020; 9(12):1664. https://doi.org/10.3390/plants9121664
Chicago/Turabian StylePoveda, Jorge, Marta Francisco, M. Elena Cartea, and Pablo Velasco. 2020. "Development of Transgenic Brassica Crops against Biotic Stresses Caused by Pathogens and Arthropod Pests" Plants 9, no. 12: 1664. https://doi.org/10.3390/plants9121664
APA StylePoveda, J., Francisco, M., Cartea, M. E., & Velasco, P. (2020). Development of Transgenic Brassica Crops against Biotic Stresses Caused by Pathogens and Arthropod Pests. Plants, 9(12), 1664. https://doi.org/10.3390/plants9121664