Induction of Hairy Roots on Somatic Embryos of Rhizoclones from Typha domingensis Seedlings
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Germination of Typha Seeds and Establishment of Rhizoclones on Somatic Embryos (SEs)
4.2. Agrobacterium Rhizogenes Strains
4.3. Induction of Transformed Hairy Roots on SE of Typha Domingensis
4.4. Experimental Model
4.5. Agrotransformation Quantification
4.6. Statistical Analyses
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doran, P.M. Application of plant tissue cultures in phytoremediation research: Incentives and limitations. Biotechnol. Bioeng. 2009, 103, 60–76. [Google Scholar] [CrossRef]
- Agostini, E.; Talano, M.A.; González, P.S.; Oller, A.L.W.; Medina, M.I. Application of hairy roots for phytoremediation: What makes them an interesting tool for this purpose? Appl. Microbiol. Biotechnol. 2013, 97, 1017–1030. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, S.; Talano, M.; Ontañon, O.; Suman, J.; Medina, M.I.; Macek, T.; Agostini, E. Transgenic plants and hairy roots: Exploiting the potential of plant species to remediate contaminants. New Biotechnol. 2016, 33, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Habibi, P.; De Sa, M.F.G.; Makhzoum, A.; Malik, S.; Da Silva, A.L.L.; Hefferon, K.; Soccol, C.R. Bioengineering Hairy Roots: Phytoremediation, secondary metabolism, molecular pharming, plant-plant interactions and biofuels. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2017; pp. 213–251. [Google Scholar]
- Srivastava, V.; Mehrotra, S.; Mishra, S. Hairy Roots: An Effective Tool of Plant Biotechnology; Springer Nature: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Iqbal, M.C.M.; Iqbal, S.S. Remediation of potentially toxic elements through transgenic plants: In Vitro Studies and the Way Forward. In Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids; Academic Press: Cambridge, MA, USA, 2019; pp. 103–128. [Google Scholar]
- Li, S.; Lissner, J.; Mendelssohn, I.A.; Brix, H.; Lorenzen, B.; McKee, K.L.; Miao, S. Nutrient and growth responses of cattail (Typha domingensis) to redox intensity and phosphate availability. Ann. Bot. 2010, 105, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhir, B. Aquatic plant species and removal of contaminants. In Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up; Springer: New Delhi, India, 2013; pp. 21–50. [Google Scholar]
- Dhir, B. Role of Wetlands. In Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up; Springer: New Delhi, India, 2013; pp. 65–93. [Google Scholar]
- Hegazy, A.K.; Abdel-Ghani, N.T.; El-Chaghaby, G.A. Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int. J. Environ. Sci. Technol. 2011, 8, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Mojiri, A.; Aziz, H.A.; Zahed, M.; Aziz, S.Q.; Selamat, M.R.B. Phytoremediation of Heavy Metals from Urban Waste Leachate by Southern Cattail (Typha domingensis). Int. J. Sci. Res. Environ. Sci. 2013, 1, 63–70. [Google Scholar] [CrossRef]
- Vera, A.; Ramos, K.; Camargo, E.; Andrade, C.; Núñez, M.; Delgado, J.; Morales, E. Phytoremediation of wastewater with high lead content and using Typha domingensis and Canna generalis. Rev. Técnica Fac. Ing. Univ. Zulia 2016, 39, 88–95. [Google Scholar]
- Shehzadi, M.; Fatima, K.; Imran, A.; Mirza, M.S.; Khan, Q.M.; Afzal, M. Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2016, 150, 1261–1270. [Google Scholar] [CrossRef]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. Phytoremediation: Halophytes as Promising Heavy Metal Hyperaccumulators. In Heavy Metals; Saleh, H.M., Aglan, R.F., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Oliveira, J.P.V.; Pereira, M.P.; Duarte, V.P.; Corrêa, F.; Castro, E.M.; Pereira, F.J. Cadmium tolerance of Typha domingensis Pers. (Typhaceae) as related to growth and leaf morphophysiology. Braz. J. Biol. 2017, 78, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Olguín, E.J.; Sánchez-Galván, G. Aquatic phytoremediation: Novel insights in tropical and subtropical regions. Pure Appl. Chem. 2010, 82, 27–38. [Google Scholar] [CrossRef]
- Young, J.M.; Kuykendall, L.D.; Martinez-Romero, E.; Kerr, A.; Sawada, H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int. J. Syst. Evol. Microbiol. 2001, 51, 89–103. [Google Scholar]
- Nandakumar, R.; Chen, L.; Rogers, S.M. Factors Affecting the Agrobacterium-Mediated Transient Transformation of the Wetland Monocot, Typha latifolia. Plant Cell Tissue Organ Cult. 2004, 79, 31–38. [Google Scholar] [CrossRef]
- Nandakumar, R.; Chen, L.; Rogers, S.M.D. Agrobacterium-mediated transformation of the wetland monocot Typha latifolia L. (Broadleaf cattail). Plant Cell Rep. 2004, 23, 744–750. [Google Scholar] [CrossRef]
- Georgiev, M.I.; Agostini, E.; Ludwig-Müller, J.; Xu, J. Genetically transformed roots: From plant disease to biotechnological resource. Trends Biotechnol. 2012, 30, 528–537. [Google Scholar] [CrossRef]
- Hofmann, N.R. A Breakthrough in Monocot Transformation Methods. Plant Cell 2016, 28, 1989. [Google Scholar] [CrossRef] [Green Version]
- Koetle, M.J.; Finnie, J.F.; Balázs, E.; Van Staden, J. A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. S. Afr. J. Bot. 2015, 98, 37–44. [Google Scholar] [CrossRef]
- Czakó, M.; Feng, X.; He, Y.; Liang, D.; Márton, L. Transgenic Spartina alterniflora for phytoremediation. Environ. Geochem. Health 2006, 28, 103–110. [Google Scholar] [CrossRef]
- Mankin, S.L.; Hill, D.S.; Olhoft, P.M.; Toren, E.; Wenck, A.R.; Nea, L.; Xing, L.; Brown, J.A.; Fu, H.; Ireland, L.; et al. Disarming and sequencing of Agrobacterium rhizogenes strain K599 (NCPPB2659) plasmid pRi2659. Vitr. Cell. Dev. Biol. Anim. 2007, 43, 521–535. [Google Scholar] [CrossRef]
- Alfaro-Saldaña, E.F.; Pérez-Molphe-Balch, E.; Santos-Díaz, M.D.S. Generation of transformed roots of Scirpus americanus Pers. and study of their potential to remove Pb2+ and Cr3+. Plant Cell Tissue Organ Cult. 2016, 127, 15–24. [Google Scholar] [CrossRef]
- Prasad, M.N.V. Prospects for Manipulation of Molecular Mechanisms and Transgenic Approaches in Aquatic Macrophytes for Remediation of Toxic Metals and Metalloids in Wastewaters. In Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids; Prasad, M.N.V., Ed.; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 395–428. [Google Scholar]
- Esteves, B.S.; Enrich-Prast, A.L.E.X.; Suzuki, M.S. Allometric relations for Typha domingensis natural populations. Acta Limnol. Bras. 2008, 20, 305–311. [Google Scholar]
- Zhou, B.; Tu, T.; Kong, F.; Wen, J.; Xu, X. Revised phylogeny and historical biogeography of the cosmopolitan aquatic plant genus Typha (Typhaceae). Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Hameed, M.; Nawaz, F.; Ahmad, K.S.; Hamid, A.; Segovia-Salcedo, C.; Shahnaz, M.M. Leaf anatomical and biochemical adaptations in Typha domingensis Pers. ecotypes for salinity tolerance. Bot. Sci. 2017, 95, 807. [Google Scholar] [CrossRef] [Green Version]
- Afzal, M.; Rehman, K.; Shabir, G.; Tahseen, R.; Ijaz, A.; Hashmat, A.J.; Brix, H. Large-scale remediation of oil-contaminated water using floating treatment wetlands. NPJ Clean Water 2019, 2, 3. [Google Scholar] [CrossRef]
- Di Luca, G.; Maine, M.; Mufarrege, M.; Hadad, H.R.; Bonetto, C. Influence of Typha domingensis in the removal of high P concentrations from water. Chemosphere 2015, 138, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.R.; Rasineni, G.K.; Raghavendra, A.S. The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr. Sci. 2010, 99, 46–57. [Google Scholar]
- Hernández-Piedra, G.; Ruiz-Carrera, V.; Sánchez, A.J.; Hernández-Franyutti, A.; Azpeitia-Morales, A. Morpho-histological development of the somatic embryos of Typha domingensis. PeerJ 2018, 6, e5952. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, E. Lagunas Continentales de Tabasco; Colección José, N. Rovirosa Biodiversidad, Desarrollo Sustentable y Trópico Húmedo; Universidad Juárez Autónoma de Tabasco: Villahermosa, Tabasco, Mexico, 2002; 243p. [Google Scholar]
- Aguado-Santacruz, G.A.; Rascón-Cruz, Q.; Moreno-Gómez, B.; Guevara-González, R.G.; Guevara-Olvera, L.; Jiménez-Bremont, J.F.; Arévalo-Gallegos, S.; Moya, E.G. Genetic transformation of blue grama grass with the rolA gene from Agrobacterium rhizogenes: Regeneration of transgenic plants involves a “hairy embryo” stage. Vitr. Cell. Dev. Biol. Anim. 2009, 45, 681–692. [Google Scholar] [CrossRef]
- Ratjens, S.; Mortensen, S.; Kumpf, A.; Bartsch, M.; Winkelmann, T. Embryogenic Callus as Target for Efficient Transformation of Cyclamen persicum Enabling Gene Function Studies. Front. Plant Sci. 2018, 9, 1–39. [Google Scholar] [CrossRef]
- Xiang, T. Cucumopine type Agrobacterium rhizogenes K599 (NCPPB2659) T-DNA-mediated plant transformation and its application. Bangladesh J. Bot. 2016, 45, 935–945. [Google Scholar]
- Desmet, S.; Dhooghe, E.; De Keyser, E.; Van Huylenbroeck, J.; Müller, R.; Geelen, D.; Lütken, H. Rhizogenic agrobacteria as an innovative tool for plant breeding: Current achievements and limitations. Appl. Microbiol. Biotechnol. 2020, 104, 2435–2451. [Google Scholar] [CrossRef]
- Mauro, M.L.; Costantino, P.; Bettini, P.P. The never ending story of rol genes: A century after. Plant Cell Tissue Organ Cult. 2017, 131, 201–212. [Google Scholar] [CrossRef]
- Gendre, D.; Baral, A.; Dang, X.; Esnay, N.; Boutté, Y.; Stanislas, T.; Vain, T.; Claverol, S.; Gustavsson, A.; Lin, D.; et al. Rho-of-plant activated root hair formation requires Arabidopsis YIP4a/b gene function. Development 2019, 146, dev168559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evert, R.F. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Ziemienowicz, A. Agrobacterium-mediated plant transformation: Factors, applications and recent advances. Biocatal. Agric. Biotechnol. 2014, 3, 95–102. [Google Scholar] [CrossRef]
- Rashid, B.; Tariq, M.; Khalid, A.; Shams, F.; Ali, Q.; Ashraf, F.; Ghaffar, I.; Khan, M.I.; Rehman, R.; Husnain, T. Crop Improvement: New Approaches and Modern Techniques. Plant Gene Trait. 2017, 8, 18–30. [Google Scholar] [CrossRef]
- Wang, S.; Song, Y.; Xiang, T.; Wu, P.; Zhang, T.; Wu, D.; Zhou, S.; Li, Y. Transgenesis of Agrobacterium rhizogenes K599 orf3 into plant alters plant phenotype to dwarf and branch. Plant Cell Tissue Organ Cult. 2016, 127, 207–215. [Google Scholar] [CrossRef]
- Kumar, V.; Satyanarayana, K.V.; Itty, S.S.; Indu, E.P.; Giridhar, P.; Chandrashekar, A.; Ravishankar, G.A. Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype. Plant Cell Rep. 2006, 25, 214–222. [Google Scholar] [CrossRef]
- Chandra, S. Natural plant genetic engineer Agrobacterium rhizogenes: Role of T-DNA in plant secondary metabolism. Biotechnol. Lett. 2012, 34, 407–415. [Google Scholar] [CrossRef]
- Dobrowolska, I.; Majchrzak, O.; Baldwin, T.C.; Kurczyńska, E.U. Differences in protodermal cell wall structure in zygotic and somatic embryos of Daucus carota (L.) cultured on solid and in liquid media. Protoplasma 2011, 249, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Matthysse, A.G. Attachment of Agrobacterium to plant surfaces. Front. Plant Sci. 2014, 5, 252. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Simmi, P.S.; Giridhar, P. Cell wall remodelling involving galactomannan de-branching influence Agrobacterium tumefaciens-mediated transformation of Coffea canephora somatic embryos. Plant Cell Tissue Organ Cult. 2018, 134, 369–382. [Google Scholar] [CrossRef]
- Nester, E.W. Agrobacterium: Nature’s genetic engineer. Front. Plant Sci. 2015, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Mamrutha, H.M.; Kaur, A.; Venkatesh, K.; Sharma, D.; Singh, G.P. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Mol. Biol. Rep. 2019, 46, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Samad, A.A.; Rahmat, Z. Agrobacterium-Mediated Transformation of Rice: Constraints and Possible Solutions. Rice Sci. 2019, 26, 133–146. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, W.; Chen, Y.; Ito, S.; Asami, T.; Wang, X. Brassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases. eLife 2014, 3, e02525. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N.; et al. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 2018, 32, 261–285. [Google Scholar] [CrossRef] [Green Version]
- Goswami, M.; Akhtar, S.; Osama, K. Strategies for Monitoring and Modeling the Growth of Hairy Root Cultures: An In Silico Perspective. In Hairy Roots; Srivastava, V., Mehrotra, S., Mishra, S., Eds.; Springer: Singapore, 2018. [Google Scholar]
- Hesami, M.; Jones, A.M.P. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [Google Scholar] [CrossRef]
- Semiarti, E. Peranan Vitamin C dan acetosyringone pada transformasi genetik anggrek Vanda tricolor Lindl. var. suavis melalui Agrobacterium tumefaciens. Bionatura 2012, 14, 3. [Google Scholar]
- Yong, W.T.L.; Henry, E.S.; Abdullah, J.O. Enhancers of Agrobacterium-mediated Transformation of Tibouchina semidecandra Selected on the Basis of GFP Expression. Trop. Life Sci. Res. 2010, 21, 115–130. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- An efficient heat-shock protocol for transformation of Agrobacterium rhizogenes without spontaneous generation to antibiotic resistance. Plant Omics 2018, 11, 20–29. [CrossRef]
Strain of Agrobacterium rhizogenes | Kruskal–Wallis | |||||
---|---|---|---|---|---|---|
Somatic Embryo | Dependent Variable | K599 | LBA9402 | A4 | H | P |
Oblong (SEo) | Frequency of transformation (%) | 25 ± 12 | 20 ± 13 | 14 ± 16 | 0.3 | 0.86 |
Survival (%) | 92 ± 12 | 71 ± 12 | 54 ± 12 | 4.7 | 0.09 | |
Scutellar (SEsc) | Frequency of transformation (%) | 88 ± 8 | 82 ± 9 | 79 ± 10 | 0.6 | 0.73 |
Survival (%) | 93 ± 8 a | 65 ± 9 b | 52 ± 8 b | 10.9 | 0.003 | |
Total SE | Frequency of transformation (%) | 68 ± 8 | 59 ± 9 | 57 ± 11 | 0.8 | 0.68 |
(SEo + SEsc) | Survival (%) | 93 ± 7 a | 68 ± 7 b | 53 ± 7 b | 15.7 | 0.002 |
Hairy Number (No) | 39.0 ± 1.2 a | 9.0 ± 7.5 bc | 22.3 ± 9.7 ab | 0.01 | ||
Length (µm) | 363.3 ± 39.6 | 165.2 ± 82.7 | 306.0 ± 34.2 | 3.6 | 0.30 | |
Density (No/mm) | 21.51 ± 3.3 a | 5.64 ± 4.7 b | 13.04 ± 5.6 ab | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Piedra, G.; Ruiz-Carrera, V.; Sánchez, A.J.; Azpeitia-Morales, A.; Calva-Calva, G. Induction of Hairy Roots on Somatic Embryos of Rhizoclones from Typha domingensis Seedlings. Plants 2020, 9, 1679. https://doi.org/10.3390/plants9121679
Hernández-Piedra G, Ruiz-Carrera V, Sánchez AJ, Azpeitia-Morales A, Calva-Calva G. Induction of Hairy Roots on Somatic Embryos of Rhizoclones from Typha domingensis Seedlings. Plants. 2020; 9(12):1679. https://doi.org/10.3390/plants9121679
Chicago/Turabian StyleHernández-Piedra, Guadalupe, Violeta Ruiz-Carrera, Alberto J. Sánchez, Alfonso Azpeitia-Morales, and Graciano Calva-Calva. 2020. "Induction of Hairy Roots on Somatic Embryos of Rhizoclones from Typha domingensis Seedlings" Plants 9, no. 12: 1679. https://doi.org/10.3390/plants9121679
APA StyleHernández-Piedra, G., Ruiz-Carrera, V., Sánchez, A. J., Azpeitia-Morales, A., & Calva-Calva, G. (2020). Induction of Hairy Roots on Somatic Embryos of Rhizoclones from Typha domingensis Seedlings. Plants, 9(12), 1679. https://doi.org/10.3390/plants9121679