Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant and Rhizobia Collection
4.2. Data Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Diouf, M.; Baudoin, E.; Dieng, L.; Assigbetsé, K.; Brauman, A. Legume and gramineous crop residues stimulate distinct soil bacterial populations during early decomposition stages. Can. J. Soil Sci. 2010, 90, 289–293. [Google Scholar] [CrossRef]
- Ladygina, N.; Hedlund, K. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol. Biochem. 2010, 42, 162–168. [Google Scholar] [CrossRef]
- McLaren, J.R.; Turkington, R. Plant identity influences decomposition through more than one mechanism. PLoS ONE 2011, 6, e23702. [Google Scholar] [CrossRef]
- Bever, J.D.; Dickie, I.A.; Facelli, E.; Facelli, J.M.; Klironomos, J.; Moora, M.; Rillig, M.C.; Stock, W.D.; Tibbett, M.; Zobel, M. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 2010, 25, 468–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ettema, C.H.; Wardle, D.A. Spatial soil ecology. Trends Ecol. Evol. 2002, 17, 177–183. [Google Scholar] [CrossRef]
- Bouffaud, M.L.; Poirier, M.A.; Muller, D.; Moënne-Loccoz, Y. Root microbiome relates to plant host evolution in maize and other Poaceae. Environ. Microbiol. 2014, 16, 2804–2814. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, M.A. The nineteenth century roots of ‘everything is everywhere. Nat. Rev. Microbiol. 2007, 5, 647–651. [Google Scholar] [CrossRef]
- Emmett, B.; Nelson, E.B.; Kessler, A.; Bauerle, T.L. Fine-root system development and susceptibility to pathogen colonization. Planta 2014, 239, 325–340. [Google Scholar] [CrossRef]
- Zhou, N.; Zhao, S.; Tian, C.Y. Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol. Lett. 2017, 364, fnx091. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G.; Ravit, B.; Elgersma, K. Feedback in the plant–soil system. Annu. Rev. Environ. Resour. 2005, 30, 75–115. [Google Scholar] [CrossRef] [Green Version]
- Hardoim, P.R.; van Overbeek, L.S.; van Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008, 16, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Aira, M.; Monroy, F.; Domínguez, J. Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb. Ecol. 2007, 54, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Zancarini, A.; Mougel, C.; Voisin, A.S.; Prudent, M.; Salon, C.; Munier-Jolain, N. Soil nitrogen availability and plant genotype modify the nutrition strategies of M. truncatula and the associated rhizosphere microbial communities. PLoS ONE 2012, 7, e47096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, J.M.; da Silva, T.F.; Vollu, R.E.; Blank, A.F.; Ding, G.C.; Seldin, L.; Smalla, K. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol. Ecol. 2014, 88, 424–435. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Garrido-Oter, R.; Münch, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; Mchardy, A.C.; Schulze-Lefert, P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 2015, 17, 392–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fierer, N.; Ladau, J. Predicting microbial distributions in space and time. Nat. Methods 2012, 9, 549–551. [Google Scholar] [CrossRef]
- Vuong, H.B.; Thrall, P.H.; Barrett, L.G. Host species and environmental variation can influence rhizobial community composition. J. Ecol. 2017, 105, 540–548. [Google Scholar] [CrossRef]
- Pahua, V.J.; Stokes, P.J.N.; Hollowell, A.C.; Regus, J.U.; Gano-Cohen, K.A.; Wendlandt, C.E.; Quides, K.W.; Lyu, J.Y.; Sachs, J.L. Fitness variation among host species and the paradox of ineffective rhizobia. J. Evol. Biol. 2018, 31, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Heath, K.D.; Tiffin, P. Context dependence in the coevolution of plant and rhizobial mutualists. Proc. R. Soc. 2007, 274, 1905–1912. [Google Scholar] [CrossRef] [Green Version]
- Rangin, C.; Brunel, B.; Cleyet-Marel, J.C.; Perrineau, M.M.; Bena, G. Effects of Medicago truncatula genetic diversity, rhizobial competition, and strain effectiveness on the diversity of a natural Sinorhizobium species community. Appl. Environ. Microbiol. 2008, 74, 5653–5661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crook, M.B.; Lindsay, D.P.; Biggs, M.B.; Bentley, J.S.; Price, J.C.; Clement, S.C.; Clement, M.J.; Long, S.R.; Griffitts, J.S. Rhizobial plasmids that cause impaired symbiotic nitrogen fixation and enhanced host invasion. Mol. Plant Microbe Interact. 2012, 25, 1026–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Chen, Y.; Xi, J.; Waters, C.; Chen, R.; Wang, D. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc. Natl. Acad. Sci. USA 2015, 112, 201500123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zgadzaj, R.; Garrido-oter, R.; Bodker, D.; Koprivova, A.; Schulze-lefert, P. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc. Natl. Acad. Sci. USA 2016, 113, E7996–E8005. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, J.; Li, H.; Yang, S.; Kormoczi, P.; Kereszt, A.; Zhu, H. Nodulespecific cysteine-rich peptides negatively regulate nitrogen-fixing symbiosis in a strain-specific manner in Medicago truncatula. Mol. Plant Microbe Interact. 2018, 31, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Perret, X.; Staehelin, C.; Broughton, W.J. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 2000, 64, 180–201. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Yang, S.; Tang, F.; Zhu, H. Symbiosis specificity in the legume: Rhizobial mutualism. Cell Microbiol. 2012, 14, 334–342. [Google Scholar] [CrossRef]
- Lu, J.; Yang, F.; Wang, S.; Ma, H.; Liang, J.; Chen, Y. Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of Dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium-like and Burkholderia pyrrocinia-like strains. Front. Microbiol. 2017, 8, 2255. [Google Scholar] [CrossRef]
- Irwin, H.S.; Barneby, R.C. The American Cassinae: A synoptical revision of Leguminosae tribe Cassieae subtribe Cassinae in the New World. Mem. N. Y. Bot. 1982, 35, 1–918. [Google Scholar]
- Reeves, D.W. Cover Crops and Rotations. In Advances in Soil Science: Crops Residue Management; Hatfield, J.L., Stewart, B.A., Eds.; Lewis Publishers, CRC Press: Boca Raton, FL, USA, 1994; pp. 125–172. [Google Scholar]
- Rodríguez-Kábana, R.; Kokalis-Burelle, N.; Robertson, D.G.; Weaver, C.F.; Wells, L. Effects of Partridge Pea–Peanut rotations on populations of Meloidogyne arenaria, incidence of Sclerotium rolfsii, and yield of peanut. Nematropica 1995, 25, 27–34. [Google Scholar]
- Singer, S.; Doyle, J.; May, G.; Cannon, S.; Maki, S.; Illut, D. Exploring Chamaecrista Fasciculata Genomics Data [Online: 2009]. Available online: http://serc.carleton.edu/exploring_genomics/chamaecrista/chamaecrista_tr.html (accessed on 10 January 2020).
- Parker, M. Mutualism in metapopulations of legumes and rhizobia. Am. Nat. 1999, 153, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.; Kennedy, D.A. Diversity and relationships of Bradyrhizobium from legumes native to eastern North America. Can. J. Microbiol. 2006, 52, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.; Andrews, M.E. Specificity in legume–rhizobia symbioses. Int. J. Mol. Sci. 2017, 18, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorman, H.; Wallace, L. Diversity of nitrogen-fixing symbionts of Chamaecrista fasciculata (Partridge Pea) across variable soils. Southeast. Nat. 2019, 80, 147–164. [Google Scholar] [CrossRef] [Green Version]
- Leite, J.; Fischer, D.; Rouws, L.F.; Fernandes-Júnior, P.I.; Hofmann, A.; Kublik, S.; Schloter, M.; Xavier, G.R.; Radl, V. Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Front. Plant Sci. 2017, 7, 2064. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, S.; Li, R.; Zhang, J.; Liu, Y.; Lv, L.; Zhu, H.; Wu, W.; Li, W. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 2017, 109, 145e155. [Google Scholar] [CrossRef]
- Igolkina, A.; Bazykin, G.A.; Chizhevskaya, E.P.; Provorov, N.A.; Andronov, E.E. The Evolutionary Moulding in plant-microbial symbiosis: Matching population diversity of rhizobial nodA and legume NFR5 genes. bioRxiv 2018, 285882. [Google Scholar] [CrossRef] [Green Version]
- Portnoy, S.; Willson., M.F. Seed dispersal curves: Behavior of the tail of the distribution. Evol. Ecol. 1993, 7, 25–44. [Google Scholar] [CrossRef]
- Willson, M.F. Dispersal mode, seed shadows, and colonization patterns. Vegetatio 1993, 107/108, 261–280. [Google Scholar]
- Schupp, E.W.; Fuentes, M. Spatial patterns of seed dispersal and the unification of plant population ecology. Écoscience 1995, 2, 267–275. [Google Scholar] [CrossRef]
- Vekemans, X.; Hardy, O.J. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 2004, 13, 921e935. [Google Scholar] [CrossRef] [PubMed]
- Loiselle, B.A.; Sork, V.L.; Nason, J.; Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 1995, 82, 1420e1425. [Google Scholar] [CrossRef]
- Rousset, F. Genetic differentiation between individuals. J. Evol. Biol. 2000, 13, 58e62. [Google Scholar] [CrossRef]
- Hardy, O.J. Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol. Ecol. 2003, 12, 1577e1588. [Google Scholar] [CrossRef] [PubMed]
- Fenster, C.B.; Vekemans, X.; Hardy, O.J. Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae). Evolution 2003, 57, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Vinues, Y.M.; Tian, C.T.; Sui, X.H.; Chen, W.F.; Chen, W.X. Robust markers reflecting phylogeny and taxonomy of rhizobia. PLoS ONE 2012, 7, e44936. [Google Scholar] [CrossRef] [Green Version]
- Van Cauwenberghe, J.; Verstraete, B.; Lemaire, B.; Lievens, B.; Michiels, J.; Honnay, O. Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst. Appl. Microbiol. 2014, 37, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Bjornsgaard Aas, A.; Andrew, C.J.; Blaalid, R.; Vik, U.; Kauserud, H.; Davey, M.L. Fine-scale diversity patterns in belowground microbial communities are consistent across kingdoms. FEMS Microbiol. Ecol. 2019, 95, fiz058. [Google Scholar] [CrossRef]
- Klock, M.M.; Barrett, L.G.; Thrall, P.H.; Harms, K.E. Host-promiscuity in symbiont associations can influence exotic legume establishment and colonization of novel ranges. Divers. Distrib. 2015, 21, 1193–1203. [Google Scholar] [CrossRef]
- Ndlovu, J.; Richardson, D.M.; Wilson, J.R.U.; Le Roux, J.J. Co-invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. J. Biogeogr. 2013, 40, 1240–1251. [Google Scholar] [CrossRef]
- Koppell, J.H.; Parker, M.A. Phylogenetic clustering of Bradyrhizobium symbionts on legumes indigenous to North America. Microbiology 2012, 158, 2050–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, M.A. The spread of Bradyrhizobium lineages across host legume clades: From Abarema to Zygia. Microb. Ecol. 2015, 69, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.M.; Casaes Alves, P.A.; Silva, V.C.; Kruschewsky Rhem, M.F.; James, E.K.; Gross, E. Diverse genotypes of Bradyrhizobium nodulate herbaceous Chamaecrista (moench) (Fabaceae, caesalpinioideae) species in Brazil. Syst. Appl. Microbiol. 2017, 40, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [Green Version]
- Schmeisser, C.; Liesegang, H.; Krysciak, D.; Krysciak, D.; Bakkou, N.; Le Quéré, A.; Wollherr, A.; Henemeyer, I.; Mogenstern, B.; Pommerening, A.; et al. Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl. Environ. Microbiol. 2009, 75, 4035–4045. [Google Scholar] [CrossRef] [Green Version]
- Safronova, V.; Belimov, A.; Sazanova, A.; Chirak, E.; Kuznetsova, I.; Andronov, E.; Pinavea, A.; Tsyganova, A.; Seliverstova, E.; Kitaeva, A.; et al. Two broad host range rhizobial strains isolated from relict legumes have various complementary effects on symbiotic parameters of co-inoculated plants. Front. Microbiol. 2019, 10, 514. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Gómez, B.; Maldonado, J.; Mandakovic, D.; Gaete, A.; Gutiérrez, R.A.; Maass, A.; Cambiazo, V.; González, M. Bacterial communities associated to Chilean altiplanic native plants from the Andean grassland’s soils. Sci. Rep. 2019, 9, 1042. [Google Scholar] [CrossRef]
- Grayston, S.J.; Wang, S.; Campbell, C.D.; Edwards, A.C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 1998, 30, 369–378. [Google Scholar] [CrossRef]
- Girvan, M.S.; Bullimore, J.; Pretty, J.N.; Osborn, A.M.; Ball, A.S. Soil type is the primary determinant of the composition of total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 2003, 69, 1800–1809. [Google Scholar] [CrossRef] [Green Version]
- Nunan, N.; Daniell, T.J.; Singh, B.K.; Papert, A.; Mc Nicol, J.W.; Prosser, J.I. Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl. Environ. Microbiol. 2005, 71, 6784–6792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachs, J.L.; Kembel, S.W.; Lau, A.H.; Simms, E.L. In situ phylogenetic structure and diversity of wild Bradyrhizobium communities. Appl. Environ. Microbiol. 2009, 75, 4727–4735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellaporta, S.L.; Wood, J.; Hicks, J.B. A plant DNA mini preparation: Version II. Plant Mol. Biol. Rep. 1983, 1, 19–21. [Google Scholar] [CrossRef]
- Culley, T.M.; Stamper, T.I.; Stokes, R.L.; Brzyski, J.R.; Hardiman, N.A.; Klooster, M.R.; Merritt, B.J. An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Appl. Plant Sci. 2013, 1, 1300027. [Google Scholar] [CrossRef]
- Castillo, F. Evaluation of Nitrogen Needs and Efficiency of Rizhobia Strains to Provide Nitrogen to Chipilin (Crotalaria Longirostrata HOOK. AND ARN). Master’s Thesis, University of Massachusetts–Amherst, Amherst, MA, USA, February 2014. [Google Scholar]
- Sylvester-Bradley, R.; Thornton, P.; Jones, P. Colony dimorphism in Bradyrhizobium strains. Appl. Environ. Microbiol. 1988, 54, 1033–1038. [Google Scholar] [CrossRef] [Green Version]
- Fuhrmann, J.J. Symbiotic effectiveness of indigenous soybean Bradyrhizobia as related to serological, morphological, rhizobiotoxine, and hydrogenase phenotypes. Appl. Environ. Microbiol. 1990, 56, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Checcucci, A.; Azzarello, E.; Bazzicalupo, M.; Galardini, M.; Lagomarsino, A.; Mancuso, S.; Marti, L.; Marzano, M.C.; Mocali, S.; Squartini, A.; et al. Mixed Nodule Infection in Sinorhizobium meliloti–Medicago sativa Symbiosis Suggest the Presence of Cheating Behavior. Front. Plant Sci. 2016, 7, 835. [Google Scholar] [CrossRef] [Green Version]
- Denison, R.F.; Kiers, E.T. Why are most rhizobia beneficial to their plant hosts, rather than parasitic? Microbes Infect. 2004, 6, 1235–1239. [Google Scholar] [CrossRef]
- Simms, E.L.; Taylor, D.L.; Povich, J.; Shefferson, R.P.; Sachs, J.; Urbina, M.; Tausczik, Y. An empirical test of partner choice mechanisms in a wild legume-rhizobium interaction. Proc. R. Soc. B Biol. Sci. 2006, 273, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Ahn, K.S.; Ha, U.; Jia, J.; Wu, D.; Jin, S. The truA gene of Pseudomonas aeruginosa is required for the expression of type III secretory genes. Microbiology 2004, 150, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Vinuesa, P.; Silva, C.; Werner, D.; Martínez-Romero, E. Population genetics and phylogenetic inference in bacterial molecular systematics: The roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogenet. Evol. 2005, 34, 29–54. [Google Scholar] [CrossRef] [PubMed]
- Lapage, S.P.; Sneath, P.H.A.; Lessel, E.F.; Skerman, V.B.D.; Seeliger, H.P.R.; Clark, W.A. Chapter 3, Rules of Nomenclature with Recommendations. In International Code of Nomenclature of Bacteria; Bacteriological Code 1990 Revision; ASM Press: Washington, DC, USA, 1992. [Google Scholar]
- Fox, G.E.; Wisotzkey, J.D.; Jurtshuk, P. How close is close: 16SrRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 1992, 42, 166–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holm, J.B.; Humphrys, M.S.; Robinson, C.K.; Settles, M.L.; Ott, S.; Fu, L.; Yang, H.; Gajer, P.; He, X.; McComb, E.; et al. Ultrahigh-throughput multiplexing and sequencing of >500-basepair amplicon regions on the Illumina HiSeq 2500 platform. mSystems 2019, 4, e29-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High Resolution Sample Inference from Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825. [Google Scholar]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [Green Version]
- RStudio Team. RStudio: Integrated Development Environment for R, Version 1.1.456. Boston, Massachussete, USA. Available online: http://www.rstudio.com (accessed on 20 March 2020).
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Hardy, O.J.; Vekemans, X. SPAGeDi: A versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2002, 2, 618–620. [Google Scholar] [CrossRef] [Green Version]
- Ritland, K. Estimators for pairwise relatedness and inbreeding coefficients. Genet. Res. 1996, 67, 175–186. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). National Library of Medicine (US), National Center for Biotechnology Information; Bethesda, MD. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 14 March 2020).
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics, and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate method to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Kishino, K.; Yano, T. Dating the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985, 22, 160–174. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Institute of Electrical and Electronics Engineers; Gateway Computing Environments Workshop (GCE): New Orleans, LA, USA, 2010; p. 115. [Google Scholar]
- Librado, P.; Rozas. J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Dellicour, S.; Mardulyn, P. SPADS 1.0: A toolbox to perform spatial analyses on DNA sequence datasets. Mol. Ecol. Resour. 2014, 14, 647–651. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary-genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinnott, R.W. Virtues of the Haversine. Sky Telesc. 1984, 68, 158. [Google Scholar]
- Rosenberg, M.S.; Anderson, C.D. PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis. Version 2. Methods Ecol. Evol. 2011, 2, 229–232. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Winodows, Version 25; IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
Plot | N | A | P | HO | HE | FIS | Significant Deviation from HWE |
---|---|---|---|---|---|---|---|
1 | 24 | 5.1 | 100 | 0.48 | 0.55 | 0.09 | no loci |
2 | 22 | 4.35 | 100 | 0.49 | 0.52 | 0.1 | 1 locus (p = 0.001) |
3 | 24 | 5 | 100 | 0.48 | 0.56 | 0.13 | 1 locus (p = 0.001) |
All | 70 | 6.78 | 100 | 0.49 | 0.58 | 0.17 | 3 loci (p = 0.001) |
Plot | Distance Range (m) | bF | p-Value | F1 | Sp Statistic |
---|---|---|---|---|---|
Plant | |||||
Plot 1 | 1–43 | −0.0138 | 0.001 * | 0.0073 | 0.0139 |
Plot 2 | 1–43 | −0.0063 | 0.125 | −0.0165 | 0.0062 |
Plot 3 | 1–43 | −0.0049 | 0.145 | −0.0068 | 0.0048 |
Plots 1–3 | 1–384 | −0.0121 | 0.000 * | 0.0451 | 0.0127 |
Rhizobia | |||||
Plot 1 | 1–43 | −0.0165 | 0.046 * | −0.0212 | 0.0162 |
Plot 2 | 1–43 | 0.0172 | 0.075 | −0.0583 | −0.0162 |
Plot 3 | 1–43 | −0.0009 | 0.882 | −0.008 | 0.0009 |
Plots 1–3 | 1–384 | −0.0031 | 0.041 * | 0.0038 | 0.0031 |
Plot | N | H | Hd | π |
---|---|---|---|---|
1 | 19 | 8 | 0.86 | 0.04175 |
2 | 15 | 6 | 0.829 | 0.03457 |
3 | 19 | 9 | 0.86 | 0.03679 |
Combined (1–3) | 53 | 6 | 0.730 | 0.03338 |
Predictor | Adjusted r Square | p-Value |
---|---|---|
Plant genetics, constant | 0.012 | 0.000 |
Plant genetics, geographic distance, constant | 0.016 | 0.000 |
Locus * | Forward and Reverse Sequence (5′-3′) | Multiplex Group | Fluorescent Label ** | Allele Size | Repeat Type |
---|---|---|---|---|---|
Cf1394 | F: GAAAAGGCGTCACCAACACC R: CGTCCATGGCTGCTACTGC | 1 | NED | 336–399 | (AGA)8 |
Cf17494 | F: TTGGGGGATGACAAAAGTGG R: CCTCAAAATCAAAAGATTGAAACG | 4 | VIC | 200–236 | (AAG)7 |
Cf3118 | F: CCTCAAAATCAAAAGATTGAAACG R: GGTGAAGGCGAAGAAACAGG | 1 | PET | 200–239 | (CCA)6 |
Cf3411 | F: GACGGCAAAGAATCCAAAGG R: TCAGTGGATCTGCTTTCTCTCC | 3 | NED | 295–319 | (CCG)7 |
Cf4935 | F: AGGAAGTGTTGATTCTGCAACC R: AGCCCCTTCACACTCAGTCC | 4 | PET | 192–225 | (AAC)5 … (AAC)7 |
Cf5782 | F: CTTCCTCAGGGTCACAGAACC R: AAAATCCGAGAGCCATGACG | 3 | NED | 189–213 | (CTT)6 |
Cf6822 | F: CCACTACTATCCCTATCAACAACAGC R: CGTTGAGCATCCACATCAGG | 1 | PET | 209–218 | (CCA)6 |
Cf6895 | F: TTCACGAGGACCCAGTAGGG R: AGAAGGCGAGACCAGAGAGC | 1 | FAM | 203–245 | (CAT)6 |
Cf7140 | F: GAGAAGGGAGTGGTCCTAATGG R: TGAGAGGCATTTGAGTCTTGC | 4 | FAM | 185–206 | (TAG)8 |
Cf8757 | F: AGTAGCACCACACCCTCACG R: TTCCTCCAATCCCCTTTTCC | 4 | FAM | 379–433 | (ATC)6 |
Cf9980 | F: GCTGCTCTGGGAATATCACG R: CTGCGTAGCCACTTCACTCG | 1 | NED | 205–352 | (GAA)7 |
Cf10002 | F: AGAGAGTGCCCAGGTGAAGG R: GATCCTCGTCGCTCATAGGG | 1 | VIC | 219–246 | (TGG)9 |
Cf20956 | F: ATTACCAAGAGTTGGAAAATATCG R: CCACCCATTCCAGAGTGTCC | 3 | FAM | 246–300 | (ATG)9 |
Cf4487 | F: CGAGGAGCCTCTTCTTCAGG R: CTGGGCTCATGTTTCTGAGG | 4 | NED | 190–217 | (TCT)12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseinalizadeh Nobarinezhad, M.; Wallace, L.E. Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts. Plants 2020, 9, 1719. https://doi.org/10.3390/plants9121719
Hosseinalizadeh Nobarinezhad M, Wallace LE. Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts. Plants. 2020; 9(12):1719. https://doi.org/10.3390/plants9121719
Chicago/Turabian StyleHosseinalizadeh Nobarinezhad, Mahboubeh, and Lisa E. Wallace. 2020. "Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts" Plants 9, no. 12: 1719. https://doi.org/10.3390/plants9121719
APA StyleHosseinalizadeh Nobarinezhad, M., & Wallace, L. E. (2020). Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts. Plants, 9(12), 1719. https://doi.org/10.3390/plants9121719