The Geomagnetic Field (GMF) Modulates Nutrient Status and Lipid Metabolism during Arabidopsis thaliana Plant Development
Abstract
:1. Introduction
2. Results and Discussion
2.1. The GMF Modulates Wax Alkane Production during Plant Development
2.2. The GMF Modulates Fatty Acid Production during Plant Development
2.3. The GMF Modulates the Expression of Lipid-Realted Genes during Plant Development
2.4. The GMF Modulates Plant Morphology
2.5. The GMF Modulates Plant Homeostasis
2.6. The GMF Modulation Highlights the Link between Lipid Metabolism and Plant Nutrition
3. Materials and Methods
3.1. Plant Materials and Growth Conditions
3.2. GMF Control System
3.3. Fatty Acid and Cuticular Alkane Chemical Composition
3.3.1. Fatty Acid Analysis
3.3.2. Cuticular Alkane Analysis
3.4. Ionome Analysis
3.5. RNA Isolation and cDNA Synthesis
3.6. Quantitative Real-Time PCR (qPCR)
3.7. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Maffei, M.E. Magnetic field effects on plant growth, development, and evolution. Front. Plant Sci. 2014, 5, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.X.; Wei, S.F.; Lu, Y.; Zhang, Y.X.; Chen, C.F.; Song, T. Removal of the local geomagnetic field affects reproductive growth in arabidopsis. Bioelectromagnetics 2013, 34, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Agliassa, C.; Maffei, M.E. Reduction of geomagnetic field (gmf) to near null magnetic field (nnmf) affects some arabidopsis thaliana clock genes amplitude in a light independent manner. J. Plant Physiol. 2019, 232, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.X.; Yin, X.; Lv, Y.; Wu, C.Z.; Zhang, Y.X.; Song, T. A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in arabidopsis. Adv. Space Res. 2012, 49, 834–840. [Google Scholar] [CrossRef]
- Agliassa, C.; Narayana, R.; Bertea, C.M.; Rodgers, C.T.; Maffei, M.E. Reduction of the geomagnetic field delays arabidopsis thaliana flowering time through downregulation of flowering-related genes. Bioelectromagnetics 2018, 39, 361–374. [Google Scholar] [CrossRef]
- Narayana, R.; Fliegmann, J.; Paponov, I.; Maffei, M.E. Reduction of geomagnetic field (gmf) to near null magnetic field (nnmf) affects Arabidopsis thaliana root mineral nutrition. Life Sci. Space Res. 2018, 19, 43–50. [Google Scholar] [CrossRef]
- Islam, M.; Maffei, M.E.; Vigani, G. The geomagnetic field is a contributing factor for an efficient iron uptake in Arabidopsis thaliana. Front. Plant Sci. 2020, 11, 325. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.P.; Wan, H.Y.; Matysik, J.; Wang, X.J. Recent advances in magnetosensing cryptochrome model systems. Acta Chim. Sin. 2018, 76, 597–604. [Google Scholar] [CrossRef]
- Pooam, M.; Arthaut, L.D.; Burdick, D.; Link, J.; Martino, C.F.; Ahmad, M. Magnetic sensitivity mediated by the arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. Planta 2019, 249, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Kornig, A.; Winklhofer, M.; Baumgartner, J.; Gonzalez, T.P.; Fratzl, P.; Faivre, D. Magnetite crystal orientation in magnetosome chains. Adv. Funct. Mater. 2014, 24, 3926–3932. [Google Scholar] [CrossRef] [Green Version]
- Kempster, R.M.; McCarthy, I.D.; Collin, S.P. Phylogenetic and ecological factors influencing the number and distribution of electroreceptors in elasmobranchs. J. Fish Biol. 2012, 80, 2055–2088. [Google Scholar] [CrossRef] [PubMed]
- Vanderstraeten, J.; Gailly, P.; Malkemper, E.P. Low-light dependence of the magnetic field effect on cryptochromes: Possible relevance to plant ecology. Front. Plant Sci. 2018, 9, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Li, Y.; Yu, Y.; Zhang, Y.; Wei, S. Suppression of arabidopsis flowering by near-null magnetic field is affected by light. Bioelectromagnetics 2015, 36, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, S.K.; Galland, P. Effects of weak static magnetic fields on the gene expression of seedlings of arabidopsis thaliana. J. Plant Physiol. 2018, 231, 9–18. [Google Scholar] [CrossRef]
- Agliassa, C.; Narayana, R.; Christie, J.M.; Maffei, M.E. Geomagnetic field impacts on cryptochrome and phytochrome signaling. J. Photochem. Photobiol. B 2018, 185, 32–40. [Google Scholar] [CrossRef]
- Hammad, M.; Albaqami, M.; Pooam, M.; Kernevez, E.; Witczak, J.; Ritz, T.; Martino, C.; Ahmad, M. Cryptochrome mediated magnetic sensitivity in arabidopsis occurs independently of light-induced electron transfer to the flavin. Photochem. Photobiol. Sci. 2020, 19, 341–352. [Google Scholar] [CrossRef]
- Xu, C.; Lv, Y.; Chen, C.; Zhang, Y.; Wei, S. Blue light-dependent phosphorylations of cryptochromes are affected by magnetic fields in arabidopsis. Adv. Space Res. 2014, 53, 1118–1124. [Google Scholar] [CrossRef]
- Ahmad, M.; Cashmore, A.R. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome a or phytochrome b in arabidopsis thaliana. Plant J. 1997, 11, 421–427. [Google Scholar] [CrossRef]
- Troncoso-Ponce, M.A.; Nikovics, K.; Marchive, C.; Lepiniec, L.; Baud, S. New insights on the organization and regulation of the fatty acid biosynthetic network in the model higher plant Arabidopsis thaliana. Biochimie 2016, 120, 3–8. [Google Scholar] [CrossRef]
- Hegebarth, D.; Jetter, R. Cuticular waxes of arabidopsis thaliana shoots: Cell-type-specific composition and biosynthesis. Plants 2017, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.C.; Ufer, G.D.; Bartels, D. Lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 2016, 39, 1029–1048. [Google Scholar] [CrossRef] [PubMed]
- Novitskaya, G.V.; Kocheshkova, T.; Novitskii, Y.I. The effects of a weak permanent magnetic field on the lipid composition and content in the onion leaves of various ages. Russ. J. Plant Physiol. 2006, 53, 638–648. [Google Scholar] [CrossRef]
- Novitskaya, G.V.; Molokanov, D.; Kocheshkova, T.; Novitskii, Y.I. Effect of weak constant magnetic field on the composition and content of lipids in radish seedlings at various temperatures. Russ. J. Plant Physiol. 2010, 57, 52–61. [Google Scholar] [CrossRef]
- Novitskii, Y.I.; Novitskaya, G.V.; Serdyukov, Y.A.; Kocheshkova, T.K.; Molokanov, D.R.; Dobrovolskii, M.V. Influence of weak permanent magnetic field on lipid peroxidation in radish seedlings. Russ. J. Plant Physiol. 2015, 62, 375–380. [Google Scholar] [CrossRef]
- Novitskii, Y.I.; Novitskaya, G.V.; Serdyukov, Y.A.; Kocheshkova, T.K.; Dobrovolskii, M.V. Lipid composition and content in the seeds of radish plants of different magnetic orientation grown in weak permanent magnetic field. Russ. J. Plant Physiol. 2014, 61, 409–418. [Google Scholar] [CrossRef]
- Novitskii, Y.I.; Novitskaya, G.V.; Molokanov, D.R.; Serdyukov, Y.A.; Yusupova, I.U. The influence of a weak horizontal permanent magnetic field on the composition and content of lipids in lettuce leaves. Biol. Bull. 2015, 42, 411–418. [Google Scholar] [CrossRef]
- Dennison, T.; Qin, W.M.; Loneman, D.M.; Condon, S.G.F.; Lauter, N.; Nikolau, B.J.; Yandeau-Nelson, M.D. Genetic and environmental variation impact the cuticular hydrocarbon metabolome on the stigmatic surfaces of maize. BMC Plant Biol. 2019, 19, 16. [Google Scholar] [CrossRef]
- Busta, L.; Hegebarth, D.; Kroc, E.; Jetter, R. Changes in cuticular wax coverage and composition on developing arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density. Planta 2017, 245, 297–311. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.B.; Kim, H.J.; Min, M.K.; Hwang, I.; Suh, M.C. Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (ltpg2) and overlapping function between ltpg/ltpg1 and ltpg2 in cuticular wax export or accumulation in arabidopsis thaliana. Plant Cell Physiol. 2012, 53, 1391–1403. [Google Scholar] [CrossRef] [Green Version]
- Suh, M.C.; Samuels, A.L.; Jetter, R.; Kunst, L.; Pollard, M.; Ohlrogge, J.; Beisson, F. Cuticular lipid composition, surface structure, and gene expression in arabidopsis stem epidermis. Plant Physiol. 2005, 139, 1649–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todd, J.; Post-Beittenmiller, D.; Jaworski, J.G. Kcs1 encodes a fatty acid elongase 3-ketoacyl-coa synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J. 1999, 17, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Tresch, S.; Heilmann, M.; Christiansen, N.; Looser, R.; Grossmann, K. Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-coa synthases. Phytochemistry 2012, 76, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Karim, E.K.; Stephanie, B.; Emilia, O.; Anne-Marie, G.; Natalie, F.; Vincent, A. Identification and characterization of a triacylglycerol lipase in arabidopsis homologous to mammalian acid lipases. FEBS Lett. 2005, 579, 6067–6073. [Google Scholar]
- Xu, C.; Yu, Y.; Zhang, Y.; Li, Y.; Wei, S. Gibberellins are involved in effect of near-null magnetic field on arabidopsis flowering. Bioelectromagnetics 2017, 38, 1–10. [Google Scholar] [CrossRef]
- Jusoh, M.; Loh, S.H.; Aziz, A.; Cha, T.S. Gibberellin promotes cell growth and induces changes in fatty acid biosynthesis and upregulates fatty acid biosynthetic genes in chlorella vulgaris umt-m1. Appl. Biochem. Biotechnol. 2019, 188, 450–459. [Google Scholar] [CrossRef]
- Tombuloglu, H.; Slimani, Y.; Alshammari, T.; Tombuloglu, G.; Almessiere, M.; Baykal, A.; Ercan, I.; Ozcelik, S.; Demirci, T. Magnetic behavior and nutrient content analyses of barley (Hordeum vulgare L.) tissues upon cond0.2fe1.8o4 magnetic nanoparticle treatment. J. Soil Sci. Plant Nutr. 2020, 20, 357–366. [Google Scholar] [CrossRef]
- Pii, Y.; Cesco, S.; Mimmo, T. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status. Plant Physiol. Biochem. 2015, 94, 48–56. [Google Scholar] [CrossRef]
- Martin-Sanchez, L.; Ariotti, C.; Garbeva, P.; Vigani, G. Investigating the effect of belowground microbial volatiles on plant nutrient status: Perspective and limitations. J. Plant Interact. 2020, 15, 188–195. [Google Scholar] [CrossRef]
- Hernandez-Torres, A.; Zapata-Morales, A.L.; Alfaro, A.E.O.; Soria-Guerra, R.E. Identification of gene transcripts involved in lipid biosynthesis in chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation. World J. Microbiol. Biotechnol. 2016, 32, 55. [Google Scholar] [CrossRef]
- Wasaki, J.; Yonetani, R.; Kuroda, S.; Shinano, T.; Yazaki, J.; Fujii, F.; Shimbo, K.; Yamamoto, K.; Sakata, K.; Sasaki, T.; et al. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 2003, 26, 1515–1523. [Google Scholar] [CrossRef]
- Abadia, A.; Ambardbretteville, F.; Remy, R.; Tremolieres, A. Iron-deficiency in pea leaves—Effect on lipid composition and synthesis. Physiol. Plant. 1988, 72, 713–717. [Google Scholar] [CrossRef] [Green Version]
- Sudre, D.; Gutierrez-Carbonell, E.; Lattanzio, G.; Rellan-Alvarez, R.; Gaymard, F.; Wohlgemuth, G.; Fiehn, O.; Alvarez-Fernandez, A.; Zamarreno, A.M.; Bacaicoa, E.; et al. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an arabidopsis ferritin mutant. J. Exp. Bot. 2013, 64, 2665–2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.T.; Zhou, Y.F.; Wang, Y.Y.; Wu, Y.M.; Ye, X.; Guo, J.X.; Chen, L.S. Magnesium deficiency induced global transcriptome change in citrus sinensis leaves revealed by rna-seq. Int. J. Mol. Sci. 2019, 20, 3129. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.J.W.; Perry, P.J.; Ciani, S.; Pandian, S.; Schmidt, W. Manganese deficiency alters the patterning and development of root hairs in arabidopsis. J. Exp. Bot. 2008, 59, 3453–3464. [Google Scholar] [CrossRef] [Green Version]
- Shankar, A.; Singh, A.; Kanwar, P.; Srivastava, A.K.; Pandey, A.; Suprasanna, P.; Kapoor, S.; Pandey, G.K. Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS ONE 2013, 8, e70321. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.W.; Wei, S.Q.; Hu, C.X.; Tan, Q.L.; Huang, T.W.; Sun, X.C. Molybdenum-induced alteration of fatty acids of thylakoid membranes contributed to low temperature tolerance in wheat. Acta Physiol. Plant. 2017, 39, 237. [Google Scholar] [CrossRef]
- Kauristie, K.; Morschhauser, A.; Olsen, N.; Finlay, C.C.; McPherron, R.L.; Gjerloev, J.W.; Opgenoorth, H.J. On the usage of geomagnetic indices for data selection in internal field modelling. Space Sci. Rev. 2017, 206, 61–90. [Google Scholar] [CrossRef] [Green Version]
- Mannino, G.; Gentile, C.; Maffei, M.E. Chemical partitioning and DNA fingerprinting of some pistachio (pistacia vera l.) varieties of different geographical origin. Phytochemistry 2019, 160, 40–47. [Google Scholar] [CrossRef]
- Christie, W.W.; Han, X. Lipid Analysis, 4th ed.; Woodhead Publishing: Oxford, UK, 2010. [Google Scholar]
- Maffei, M. Chemotaxonomic significance of leaf wax alkanes in the gramineae. Biochem. Syst. Ecol. 1996, 24, 53–64. [Google Scholar] [CrossRef]
- Rozen, S.; Skaletsky, H. Primer3 on the www for general users and for biologist programmers. In Bioinformatics Methods and Protocols; Misener, S., Krawetz, S.A., Eds.; Humana Press: Totowa, NJ, USA, 2000; pp. 365–386. [Google Scholar]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-pcr data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, L.B.B.; Romero, P.; Fich, E.A.; Domozych, D.S.; Rose, J.K.C. Cuticle biosynthesis in tomato leaves is developmentally regulated by abscisic acid. Plant Physiol. 2017, 174, 1384–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalabrin, E.; Radaelli, M.; Rizzato, G.; Bogani, P.; Buiatti, M.; Gambaro, A.; Capodaglio, G. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: Unraveling metabolic responses. Anal. Bioanal. Chem. 2015, 407, 6357–6368. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.N.; Zhu, C.; Jiang, J.; Zhang, H.M.; Zhu, J.K.; Duan, C.G. Epigenetic regulation in plant abiotic stress responses. J. Integr. Plant Biol. 2020, 62, 563–580. [Google Scholar] [CrossRef]
- Bertea, C.M.; Narayana, R.; Agliassa, C.; Rodgers, C.T.; Maffei, M.E. Geomagnetic field (gmf) and plant evolution: Investigating the effects of gmf reversal on Arabidospis thaliana development and gene expression. J. Visual. Exp. 2015, 105, e53286. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M. Photocycle and signaling mechanisms of plant cryptochromes. Curr. Opin. Plant Biol. 2016, 33, 108–115. [Google Scholar] [CrossRef]
- Chen, Q.H.; Yang, G.W. Signal function studies of ros, especially rboh-dependent ros, in plant growth, development and environmental stress. J. Plant Growth Regul. 2020, 39, 157–171. [Google Scholar] [CrossRef]
- Radhakrishnan, R. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiol. Mol. Biol. Plants 2019, 25, 1107–1119. [Google Scholar] [CrossRef]
Rosette | Bolting | Flowering | Seed-Set | |||||
---|---|---|---|---|---|---|---|---|
GMF | NNMF | GMF | NNMF | GMF | NNMF | GMF | NNMF | |
Macronutrients (mg/gDW) | ||||||||
Na | 3.47 ± 1.67 | 2.11 ± 0.56 | 1.15 ± 0.09 | 1.38 ± 0.21 | 1.00 ± 0.87 | 0.64 ± 0.49 | 0.43 ± 0.09 | 1.09 ± 0.38 |
Mg | 4.29 ± 0.34 | 4.04 ± 0.04 | 3.40 ± 0.04 | 3.74 ± 0.63 | 3.30 ± 1.43 | 2.36 ± 1.78 | 2.71 ± 0.38 | 3.84 ± 0.48 ** |
K | 36.19 ± 2.46 | 36.76 ± 2.50 | 30.25 ± 3.74 | 31.75 ± 5.42 | 32.73 ± 14.79 | 21.93 ± 16.43 | 29.61 ± 1.76 | 34.46 ± 2.33 ** |
Ca | 19.77 ± 1.58 | 20.11 ± 1.09 | 15.46 ± 0.99 | 17.28 ± 2.58 | 13.57 ± 6.35 | 9.93 ± 7.68 | 8.18 ± 2.14 | 16.26 ± 3.86 ** |
P | 7.28 ± 0.27 | 7.64 ± 0.28 | 5.63 ± 0.44 | 5.62 ± 0.77 | 5.77 ± 2.07 | 4.08 ± 3.03 | 6.32 ± 0.43 | 5.23 ± 1.40 |
Micronutrients (µg/gDW) | ||||||||
Mn | 23.59 ± 1.06 | 27.29 ± 2.84 | 19.75 ± 0.70 | 20.14 ± 10.07 | 17.84 ± 4.96 | 10.98 ± 7.97 | 18.23 ± 1.33 | 21.99 ± 1.37 ** |
Fe | 334.24 ± 57.52 | 610.57 ± 153.40 ** | 287.77 ± 82.51 | 281.50 ± 166.94 | 126.5 ± 69.09 | 112.94 ± 23.12 | 90.93 ± 23.33 | 142.47 ± 35.31 |
Co | 0.18 ± 0.02 | 0.11 ± 0.09 | 0.13 ± 0.04 | 0.20 ± 0.02 ** | 0.07 ± 0.04 | 0.12 ± 0.02 | 0.14 ± 0.02 | 0.07 ± 0.04 ** |
Ni | 3.67 ± 0.97 | 5.55 ± 3.53 | 2.31 ± 0.70 | 3.89 ± 2.34 | 2.37 ± 2.10 | 1.69 ± 1.15 | 1.66 ± 0.54 | 3.25 ± 0.15 ** |
Cu | 15.02 ± 2.37 | 17.90 ± 5.63 | 14.07 ± 1.88 | 10.18 ± 2.29 | 12.70 ± 10.50 | 8.38 ± 6.14 | 9.98 ± 1.69 | 11.87 ± 1.12 |
Zn | 318.15 ± 87.91 | 346.33 ± 267.53 | 228.44 ± 85.19 | 194.07 ± 42.44 | 456.97 ± 672.99 | 77.27 ± 62.36 | 76.88 ± 11.29 | 82.09 ± 4.83 |
Mo | 12.63 ± 10.32 | 7.38 ± 2.33 | 3.69 ± 1.08 | 4.92 ± 1.84 | 2.93 ± 1.37 | 2.21 ± 1.70 | 1.77 ± 0.30 | 3.31 ± 0.79 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.; Vigani, G.; Maffei, M.E. The Geomagnetic Field (GMF) Modulates Nutrient Status and Lipid Metabolism during Arabidopsis thaliana Plant Development. Plants 2020, 9, 1729. https://doi.org/10.3390/plants9121729
Islam M, Vigani G, Maffei ME. The Geomagnetic Field (GMF) Modulates Nutrient Status and Lipid Metabolism during Arabidopsis thaliana Plant Development. Plants. 2020; 9(12):1729. https://doi.org/10.3390/plants9121729
Chicago/Turabian StyleIslam, Monirul, Gianpiero Vigani, and Massimo E. Maffei. 2020. "The Geomagnetic Field (GMF) Modulates Nutrient Status and Lipid Metabolism during Arabidopsis thaliana Plant Development" Plants 9, no. 12: 1729. https://doi.org/10.3390/plants9121729
APA StyleIslam, M., Vigani, G., & Maffei, M. E. (2020). The Geomagnetic Field (GMF) Modulates Nutrient Status and Lipid Metabolism during Arabidopsis thaliana Plant Development. Plants, 9(12), 1729. https://doi.org/10.3390/plants9121729