Arabidopsis RanBP2-Type Zinc Finger Proteins Related to Chloroplast RNA Editing Factor OZ1
Abstract
:1. Introduction
2. Subcellular Location of RanBP2 Zinc Fingers in Arabidopsis
3. Phylogenetic Analysis of Arabidopsis Proteins Carrying RanB2 Zinc Fingers
4. RanBP2 Proteins with Known Functions
4.1. OZ1 and Family
4.2. RHOMBOID-Like Protein 14 (RBL14)
4.3. Histone Deacetylase 15 (HDA15)
4.4. TATA-Binding Protein-Associated Factor 15 and 15b (TAF15 & TAF15b)
4.5. Hsp70 Subfamily B Suppressor (HBS1)/Superkiller Protein 7 (SKI7)
4.6. Suppressor of ABI3-5 (SUA)
4.7. Stress Associated RNA-Binding Protein 1 (SRP1)
4.8. Ariadne Family
5. Uncharacterized RanBP2 Znf Proteins
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, B.B.; Patel, H.H.; Roepman, R.; Schick, D.; Ferreira, P.A. The Zinc Finger Cluster Domain of RanBP2 Is a Specific Docking Site for the Nuclear Export Factor, Exportin-1. J. Biol. Chem. 1999, 274, 37370–37378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higa, M.M.; Alam, S.L.; Sundquist, W.I.; Ullman, K.S. Molecular Characterization of the Ran-binding Zinc Finger Domain of Nup153. J. Biol. Chem. 2007, 282, 17090–17100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.J.; van der Weyden, L.; Mayeda, A.; Stamm, S.; Morris, B.J.; Rasko, J.E.J. ZNF265—A novel spliceosomal protein able to induce alternative splicing. J. Cell Biol. 2001, 154, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.H.J.; Markus, M.A.; Mangs, A.H.; Raitskin, O.; Sperling, R.; Morris, B.J. ZRANB2 localizes to supraspliceosomes and influences the alternative splicing of multiple genes in the transcriptome. Mol. Biol. Rep. 2013, 40, 5381–5395. [Google Scholar] [CrossRef] [PubMed]
- Loughlin, F.E.; Mansfield, R.E.; Vaz, P.M.; McGrath, A.P.; Setiyaputra, S.; Gamsjaeger, R.; Chen, E.S.; Morris, B.J.; Guss, J.M.; Mackay, J.P. The zinc fingers of the SR-like protein ZRANB2 are single-stranded RNA-binding domains that recognize 5′ splice site-like sequences. Proc. Natl. Acad. Sci. USA 2009, 106, 5581–5586. [Google Scholar] [CrossRef] [Green Version]
- Roca, X.; Krainer, A.R.; Eperon, I.C. Pick one, but be quick: 5′ splice sites and the problems of too many choices. Genes Dev. 2013, 27, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.W.S.; Smith, P.; Simpson, C.G. Arabidopsis consensus intron sequences. Plant Mol. Biol. 1996, 32, 531–535. [Google Scholar] [CrossRef]
- Li, X.; Xue, Y.; Liu, X.; Zheng, J.; Shen, S.; Yang, C.; Chen, J.; Li, Z.; Liu, L.; Ma, J.; et al. ZRANB2/SNHG20/FOXK1 Axis regulates vasculogenic mimicry formation in glioma. J. Exp. Clin. Cancer Res. 2019, 38, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, C.D.; Mansfield, R.E.; Leung, W.; Vaz, P.M.; Loughlin, F.E.; Grant, R.P.; Mackay, J.P. Characterization of a Family of RanBP2-Type Zinc Fingers that Can Recognize Single-Stranded RNA. J. Mol. Biol. 2011, 407, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Shi, X.; Friso, G.; Van Wijk, K.; Bentolila, S.; Hanson, M.R. A Zinc Finger Motif-Containing Protein Is Essential for Chloroplast RNA Editing. PLoS Genet. 2015, 11, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, A.L.; Attwood, T.K.; Babbitt, P.C.; Blum, M.; Bork, P.; Bridge, A.; Brown, S.D.; Chang, H.Y.; El-Gebali, S.; Fraser, M.I.; et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019, 47, D351–D360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 2010, 26, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Hooper, C.M.; Castleden, I.R.; Tanz, S.K.; Aryamanesh, N.; Millar, A.H. SUBA4: The interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 2017, 45, D1064–D1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, A.H.; Sweetlove, L.J.; Giegé, P.; Leaver, C.J. Analysis of the Arabidopsis Mitochondrial Proteome. Plant Physiol. 2001, 127, 1711–1727. [Google Scholar] [CrossRef] [PubMed]
- Small, I.; Peeters, N.; Legeai, F.; Lurin, C. Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 2004, 4, 1581–1590. [Google Scholar] [CrossRef]
- Inzé, A.; Vanderauwera, S.; Hoeberichts, F.A.; Vandorpe, M.; Van Gaever, T.; Van Breusegem, F. A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant. Cell Env. 2012, 35, 308–320. [Google Scholar] [CrossRef]
- UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [CrossRef] [Green Version]
- Berardini, T.Z.; Reiser, L.; Li, D.; Mezheritsky, Y.; Muller, R.; Strait, E.; Huala, E. The Arabidopsis Information Resource: Making and Mining the “Gold Standard” Annotated Reference Plant Genome. Genes 2015, 53, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Whelan, S.; Goldman, N. A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach. Mol. Biol. Evol. 2001, 18, 691–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mladek, C.; Guger, K.; Hauser, M.T. Identification and characterization of the ARIADNE gene family in Arabidopsis. A group of putative E3 ligases. Plant Physiol. 2003, 131, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraft, E.; Stone, S.L.; Ma, L.; Su, N.; Gao, Y.; Lau, O.; Deng, X.; Callis, J. Genome Analysis and Functional Characterization of the E2 and RING-Type E3 Ligase Ubiquitination Enzymes of Arabidopsis. Plant Physiol. 2005, 139, 1597–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Gipson, A.; Bentolila, S.; Kehl, A.; Hanson, M.R. Functional analysis of domains required for activity of chloroplast RNA editing factor OZ1. 2020; in preparation. [Google Scholar]
- Naested, H.; Holm, A.; Jenkins, T.; Nielsen, H.B.; Harris, C.A.; Beale, M.H.; Andersen, M.; Mant, A.; Scheller, H.; Camara, B.; et al. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development. J. Cell Sci. 2004, 117, 4807–4818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knopf, R.R.; Adam, Z. Rhomboid proteases in plants—Still in square one? Physiol. Plant. 2012, 145, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Wunderle, L.; Knopf, J.D.; Kühnle, N.; Morlé, A.; Hehn, B.; Adrain, C.; Strisovsky, K.; Freeman, M.; Lemberg, M.K. Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFα. Sci. Rep. 2016, 6, 27342. [Google Scholar] [CrossRef] [Green Version]
- Lemberg, M.K.; Freeman, M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 2007, 17, 1634–1646. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, L.P.; Sowdhamini, R. Cross genome comparisons of serine proteases in Arabidopsis and rice. Bmc Genom. 2006, 7, 200. [Google Scholar] [CrossRef] [Green Version]
- Kmiec-Wisniewska, B.; Krumpe, K.; Urantowka, A.; Sakamoto, W.; Pratje, E.; Janska, H. Plant mitochondrial rhomboid, AtRBL12, has different substrate specificity from its yeast counterpart. Plant Mol. Biol. 2008, 68, 159–171. [Google Scholar] [CrossRef]
- Kanaoka, M.M.; Urban, S.; Freeman, M.; Okada, K. An Arabidopsis Rhomboid homolog is an intramembrane protease in plants. Febs Lett. 2005, 579, 5723–5728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, R.; Müller, A.; Napoli, C.A.; Selinger, D.A.; Pikaard, C.S.; Richards, E.J.; Bender, J.; Mount, D.W.; Jorgensen, R.A. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 2002, 30, 5036–5055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alinsug, M.V.; Chen, F.F.; Luo, M.; Tai, R.; Jiang, L.; Wu, K. Subcellular Localization of Class II HDAs in Arabidopsis thaliana: Nucleocytoplasmic Shuttling of HDA15 Is Driven by Light. PLoS ONE 2012, 7, e30846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Chen, C.-Y.; Wang, K.-C.; Luo, M.; Tai, R.; Yuan, L.; Zhao, M.; Yang, S.; Tian, G.; Cui, Y.; et al. PHYTOCHROME INTERACTING FACTOR3 Associates with the Histone Deacetylase HDA15 in Repression of Chlorophyll Biosynthesis and Photosynthesis in Etiolated Arabidopsis Seedlings. Plant Cell 2013, 25, 1258–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Lei, T.; Cui, X.; Liu, X.; Zhou, S.; Zheng, Y.; Guérard, F.; Issakidis-Bourguet, E.; Zhou, D. Arabidopsis histone deacetylase HDA15 directly represses plant response to elevated ambient temperature. Plant J. 2019, 100, 991–1006. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Chen, C.-Y.; Zhao, M.; Zhao, L.; Duan, X.; Duan, J.; Wu, K.; Liu, X. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Res. 2017, 45, 7137–7150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.G.; Seo, P.J. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nat. Commun. 2019, 10, 1713. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Liu, X.; Liu, X.; Li, Y.; Wu, K.; Hou, X. Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation. Mol. Plant 2017, 10, 260–273. [Google Scholar] [CrossRef] [Green Version]
- Lago, C.; Clerici, E.; Mizzi, L.; Colombo, L.; Kater, M.M. TBP-associated factors in Arabidopsis. Gene 2004, 342, 231–241. [Google Scholar] [CrossRef]
- Dong, O.X.; Meteignier, L.-V.; Plourde, M.B.; Ahmed, B.; Wang, M.; Jensen, C.; Jin, H.; Moffett, P.; Li, X.; Germain, H. Arabidopsis TAF15b Localizes to RNA Processing Bodies and Contributes to snc1 -Mediated Autoimmunity. Mol. Plant-Microbe Interact. 2016, 29, 247–257. [Google Scholar] [CrossRef]
- Marko, M.; Vlassis, A.; Guialis, A.; Leichter, M. Domains involved in TAF15 subcellular localisation: Dependence on cell type and ongoing transcription. Gene 2012, 506, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Eom, H.; Park, S.J.; Kim, M.K.; Kim, H.; Kang, H.; Lee, I. TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C. Plant J. 2018, 93, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertolotti, A.; Lutz, Y.; Heard, D.J.; Chambon, P.; Tora, L. hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. Embo J. 1996, 15, 5022–5031. [Google Scholar] [CrossRef] [PubMed]
- Brunkard, J.O.; Baker, B. A Two-Headed Monster to Avert Disaster: HBS1/SKI7 Is Alternatively Spliced to Build Eukaryotic RNA Surveillance Complexes. Front. Plant Sci. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kalisiak, K.; Kuliński, T.M.; Tomecki, R.; Cysewski, D.; Pietras, Z.; Chlebowski, A.; Kowalska, K.; Dziembowski, A. A short splicing isoform of HBS1L links the cytoplasmic exosome and SKI complexes in humans. Nucleic Acids Res. 2016, 45, 2068–2080. [Google Scholar] [CrossRef] [Green Version]
- Szádeczky-Kardoss, I.; Csorba, T.; Auber, A.; Schamberger, A.; Nyikó, T.; Taller, J.; Orbán, T.I.; Burgyán, J.; Silhavy, D. The nonstop decay and the RNA silencing systems operate cooperatively in plants. Nucleic Acids Res. 2018, 46, 4632–4648. [Google Scholar] [CrossRef] [Green Version]
- Szádeczky-Kardoss, I.; Gál, L.; Auber, A.; Taller, J.; Silhavy, D. The No-go decay system degrades plant mRNAs that contain a long A-stretch in the coding region. Plant Sci. 2018, 275, 19–27. [Google Scholar] [CrossRef]
- Lange, H.; Ndecky, S.Y.A.; Gomez-Diaz, C.; Pflieger, D.; Butel, N.; Zumsteg, J.; Kuhn, L.; Piermaria, C.; Chicher, J.; Christie, M.; et al. RST1 and RIPR connect the cytosolic RNA exosome to the Ski complex in Arabidopsis. Nat. Commun. 2019, 10, 3871. [Google Scholar] [CrossRef] [Green Version]
- Sugliani, M.; Brambilla, V.; Clerkx, E.J.M.; Koornneef, M.; Soppe, W.J.J. The Conserved Splicing Factor SUA Controls Alternative Splicing of the Developmental Regulator ABI3 in Arabidopsis. Plant Cell 2010, 22, 1936–1946. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, R.R.; Gampala, S.S.L.; Rock, C.D. Abscisic acid signaling in seeds and seedlings. Plant Cell 2002, 14 Suppl, S15–S45. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, Y.; Ding, P.; Li, Y.; Kong, Q.; Zhang, Y. Splicing of Receptor-Like Kinase-Encoding SNC4 and CERK1 is Regulated by Two Conserved Splicing Factors that Are Required for Plant Immunity. Mol. Plant 2014, 7, 1766–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Chen, Y.; Qian, L.; Mu, R.; Yuan, X.; Fang, H.; Huang, X.; Xu, E.; Zhang, H.; Huang, J. A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2. Front. Plant Sci. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hershko, A.; Ciechanover, A. The ubiquitin system. Ann. Rev. Biochem. 1998, 67, 425–479. [Google Scholar] [CrossRef] [PubMed]
- Joazeiro, C.A.P.; Weissman, A.M. RING Finger Proteins. Cell 2000, 102, 549–552. [Google Scholar] [CrossRef] [Green Version]
- Ron, M.; Alandete Saez, M.; Eshed Williams, L.; Fletcher, J.C.; McCormick, S. Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev. 2010, 24, 1010–1021. [Google Scholar] [CrossRef] [Green Version]
- Marín, I.; Ferrús, A. Comparative Genomics of the RBR Family, Including the Parkinson’s Disease–Related Gene Parkin and the Genes of the Ariadne Subfamily. Mol. Biol. Evol. 2002, 19, 2039–2050. [Google Scholar] [CrossRef] [Green Version]
- Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017, 45, D200–D203. [Google Scholar] [CrossRef]
Name | UniProt ID | TAIR ID | # of RanBP2 Znf Domains | Znf Function 1 | SUBA Localization 2 | TargetP 2 | Predotar (v. 1.04, 2016) 2 | Function 1 |
---|---|---|---|---|---|---|---|---|
OZ1 | Q8S9K3 | At5g17790 | 2 | N/A | Plastid (1) | Chloroplast (0.4837) | Non-Organellar (0.78) | RNA editing |
OZ2 | Q9C7M2 | At1g55040 | 2 | N/A | Plastid (1) | Mitochondrial (0.8581) | Plastid (0.41), Mitochondria (0.38) | N/A |
OZ3 | F4I6V3 | At1g70650 | 3 | N/A | Cytosol (0.579) | Mitochondrial (0.7018) | Mitochondria (0.71) | N/A |
OZ4 | Q9LP67 | At1g48570 | 4 | N/A | Plastid (0.993) | Mitochondrial (0.8274) | Non-Organellar (0.75) | N/A |
RHOMBOID-like protein 14 (RBL14) | Q8RXW0 | At3g17611 | 1 | Protein interaction | Plasma membrane (1) | Mitochondria (0.9658) | Non-Organellar (0.72) | Serine protease |
SKI7 | F4KI84 | At5g10630 | 1 | Protein interaction | Cytosol (0.998) | Non-Organellar (0.9999) | Non-Organellar (0.99) | RNA degradation |
SKI7-variant | Q9LXB6 | At5g10630 | 1 | Protein interaction | Cytosol (1) | Non-Organellar (0.9913) | Non-Organellar (0.97) | RNA degradation |
HBS1 | A0A1P8BFF4 | At5g10630 | 1 | Protein interaction | Cytosol (0.998) | Non-Organellar (0.9984) | Non-Organellar (0.99) | Stalled ribosome rescue |
TBP-associated factor 15 (TAF15) | Q9AST1 | At1g50300 | 2 | RNA binding | Nucleus (1) | Non-Organellar (0.9998) | Non-Organellar (0.99) | Component of the general transcription factor TFIID |
TBP-associated factor 15B (TAF15b) | Q94KD0 | At5g58470 | 1 | RNA binding | Nucleus (1) | Non-Organellar (0.9999) | Non-Organellar (0.99) | PolII inhibition |
SUPPRESSOR OF ABI3-5 (SUA) | F4JCU0 | At3g54230 | 1 | RNA binding | Nucleus (1) | Non-Organellar (1) | Non-Organellar (0.99) | Splicing Factor |
Histone Deacetylase 15 (HDA15) | Q8GXJ1 | At3g18520 | 1 | Protein interaction | Nucleus (1) | Non-Organellar (0.9977) | Non-Organellar (0.99) | Chromatin modification |
ARI8 | Q8W468 | At1g65430 | 1 | Protein interaction | Nucleus (1) | Non-Organellar (1) | Non-Organellar (0.99) | Protein turnover/ubiquitination |
ARI13 | Q9FFN9 | At5g63750 | 1 | Protein interaction | Nucleus (1) | Non-Organellar (0.9997) | Non-Organellar (0.99) | Protein turnover/ubiquitination |
ARI14 | Q9FFP1 | At5g63730 | 1 | Protein interaction | Nucleus (0.996) | Non-Organellar (1) | Non-Organellar (0.99) | Protein turnover/ubiquitination |
ARI15 | Q84RQ8 | At5g63760 | 1 | Protein interaction | Nucleus (0.997) | Non-Organellar (0.9967) | Non-Organellar (0.99) | Protein turnover/ubiquitination |
ARI16 | Q9C5A4 | At5g08730 | 1 | Protein interaction | Nucleus (0.999) | Non-Organellar (0.9999) | Non-Organellar (0.99) | Protein turnover/ubiquitination |
Stress-associated RNA-binding Protein 1 (SRP1) | Q8S8K1 | At2g17975 | 3 | RNA binding | Nucleus (0.98) | Non-Organellar (0.9979) | Non-Organellar (0.99) | RNA turnover; binding of 3′-UTR of ABI2 |
- | Q9SA95 | At1g11800 | 1 | N/A | Mitochondria (0.999) | Mitochondria (0.7178) | Mitochondria (0.55) | N/A |
- | Q8GWD1 | At5g25490 | 3 | N/A | Nucleus (0.54) | Non-Organellar (0.9895) | Non-Organellar (0.99) | N/A |
- | F4JM55 | At4g28990 | 1 | N/A | Nucleus (1) | Non-Organellar (1) | Non-Organellar (0.99) | N/A |
- | Q8GZ43 | At1g67325 | 3 | N/A | Nucleus (1) | Non-Organellar (0.9915) | Non-Organellar (0.98) | N/A |
- | A0A1P8ARI2 | At1g55915 | 2 | N/A | Nucleus (0.999) | Non-Organellar (0.9174) | Non-Organellar (0.86) | N/A |
- | O64715 | At2g02620 | 2 | N/A | Cytosol (0.542) | Non-Organellar (0.9994) | Non-Organellar (0.99) | N/A |
- | Q6ID73 | At2g26695 | 3 | N/A | Plasma membrane (0.545) | Non-Organellar (0.7971)/Signal peptide (0.2023) | Non-Organellar (0.98) | N/A |
- | Q9LW11 | At3g15680 | 3 | N/A | Nucleus (0.879) | Non-Organellar (0.9787) | Non-Organellar (0.99) | N/A |
Pp_OZ | A0A2K1J4G7 | PHYPA_022275 | 3 | N/A | N/A | Mitochondria (0.4898)/Chloroplast (0.4733) | Plastid (0.88) | N/A |
Sm_OZ | D8SXV1 | SELMODRAFT_447225 | 2 | N/A | N/A | Non-Organellar (0.6019)/Mitochondria (0.3215) | Non-Organellar (0.74) | N/A |
Zm_OZ1 | A0A1D6N8W5 | GRMZM2G312244 | 2 | N/A | N/A | Mitochondria (0.4279)/Chloroplast (0.3028) | ER (0.76), Plastid (0.41) | RNA editing |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gipson, A.B.; Giloteaux, L.; Hanson, M.R.; Bentolila, S. Arabidopsis RanBP2-Type Zinc Finger Proteins Related to Chloroplast RNA Editing Factor OZ1. Plants 2020, 9, 307. https://doi.org/10.3390/plants9030307
Gipson AB, Giloteaux L, Hanson MR, Bentolila S. Arabidopsis RanBP2-Type Zinc Finger Proteins Related to Chloroplast RNA Editing Factor OZ1. Plants. 2020; 9(3):307. https://doi.org/10.3390/plants9030307
Chicago/Turabian StyleGipson, Andrew B., Ludovic Giloteaux, Maureen R. Hanson, and Stephane Bentolila. 2020. "Arabidopsis RanBP2-Type Zinc Finger Proteins Related to Chloroplast RNA Editing Factor OZ1" Plants 9, no. 3: 307. https://doi.org/10.3390/plants9030307