In Vitro Propagation, Phytochemical and Neuropharmacological Profiles of Bacopa monnieri (L.) Wettst.: A Review
Abstract
:1. Introduction
2. Axillary Shoot Proliferation
3. Organogenesis
3.1. Organogenesis from In Vitro Derived Explants
3.2. Organogenesis from Ex Vitro Derived Explants
4. Somatic Embryogenesis
5. Clonal Fidelity and Phytochemical Analysis in In Vitro Propagated Plants
6. Culture in Bioreactors
7. Bioactive Compounds in B. monnieri
8. Pharmacological Activities
8.1. Anti-Oxidant Properties
8.2. Anti-Cancer/Cytotoxic Properties
8.3. Anti-Inflammatory Properties
8.4. Gastrointestinal Properties
8.5. Anti-Alzheimer’s Properties
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gohil, K.J.; Patel, J.A. A review on Bacopa monniera: Current research and future prospects. Int. J. Green Pharm. 2010, 4, 1–9. [Google Scholar] [CrossRef]
- Russo, A.; Borrelli, F. Bacopa monniera, a reputed nootropic plant: An overview. Phytomedicine 2005, 12, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Basu, A.; Paul, P.; Halder, M.; Jha, S. Bacosides and Neuroprotection. In Natural Products; Ramawat, K., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3639–3660. [Google Scholar]
- Aguiar, S.; Borowski, T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res. 2013, 16, 313–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajan, K.E.; Preethi, J.; Singh, H.K. Molecular and functional characterization of Bacopa monniera: A retrospective review. Evid. Based Complement. Altern. Med. 2015, 2015, 1–12. [Google Scholar]
- Jyoti, A.; Sharma, D. Neuroprotective role of Bacopa monniera extract against aluminium-induced oxidative stress in the hippocampus of rat brain. NeuroToxicology 2006, 27, 457. [Google Scholar] [CrossRef]
- Jyoti, A.; Sethi, P.; Sharma, D. Bacopa monniera prevents from aluminium neurotoxicity in the cerebral cortex of rat brain. J. Ethnopharmacol. 2007, 111, 56–62. [Google Scholar]
- Kamkaew, N.; Scholfield, C.N.; Ingkaninan, K.; Taepavarapruk, N.; Chootip, K. Bacopa monnieri increases cerebral blood flow in rat independent of blood pressure. Phytother. Res. 2013, 27, 135–138. [Google Scholar] [CrossRef]
- Rastogi, M.; Ojha, R.P.; Prabu, P.C.; Devi, B.P.; Agrawal, A.; Dubey, G.P. Prevention of age-associated neurodegeneration and promotion of healthy brain ageing in female Wistar rats by long term use of bacosides. Biogerontology 2012, 13, 183–195. [Google Scholar] [CrossRef]
- Mohapatra, H.P.; Rath, S.P. In vitro studies of Bacopa monnieri—An important medicinal plant with reference to its biochemical variations. Indian J. Exp. Biol. 2005, 43, 373–376. [Google Scholar]
- Sharma, N.; Satsangi, R.; Pandey, R.; Devi, S.; Vimala, S. In vitro clonal propagation and medium term conservation of Brahmi (Bacopa monnieri). J. Plant Biochem. Biotechnol. 2007, 16, 139–142. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Kumar, A.; Ghosal, S. Effect of Bacopa monniera on animal models of Alzheimer’s disease and perturbed central cholinergic markers of cognition inrats. In Molecular Aspects of Asian Medicines; Siva Sankar, D.V., Ed.; PJD Publications: New York, NY, USA, 1999; pp. 27–58. [Google Scholar]
- Deb, D.D.; Kapoor, D.; Dighe, D.P.; Padmaja, D.; Anand, M.S.; D’Souza, P.; Deepak, M.; Murali, B.; Agarwal, A. In vitro safety evaluation and anticlastogenic effect of BacoMind on human lymphocytes. Biomed. Environ. Sci. 2008, 21, 7–23. [Google Scholar] [CrossRef]
- Sairam, K.; Dorababu, M.; Goel, R.K.; Bhattacharya, S.K. Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats. Phytomedicine 2002, 9, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Sairam, L.; Rao, C.; Babu, M.; Goel, R.K. Prophylactic and curative effects of Bacopa monniera in gastric ulcer models. Phytomedicine 2001, 84, 23–430. [Google Scholar]
- Bhatia, G.; Palit, G.; Pal, R.; Singh, S.; Singh, H.K. Adaptogenic effect of Bacopa monniera (Brahmi). Pharmacol. Biochem. Behav. 2003, 75, 823–830. [Google Scholar]
- Khan, R.; Krishnakumar, A.; Paulose, C.S. Decreased glutamate receptor binding and NMDA R1 gene expression in hippocampus of pilocarpine-induced epileptic rats: Neuroprotective role of Bacopa monnieri extract. Epilepsy Behav. 2008, 12, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Mathew, J.; Paul, J.; Nandhu, M.S.; Paulose, C.S. Increased excitability and metabolism in pilocarpine induced epileptic rats: Effect of Bacopa monnieri. Fitoterapia 2010, 81, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Mathew, J.; Soman, S.; Sadanandan, J.; Paulose, C.S. Decreased GABA receptor in the striatum and spatial recognition memory deficit in epileptic rats: Effect of Bacopa monnieri and bacoside-A. J. Ethnopharmacol. 2010, 130, 255–261. [Google Scholar] [CrossRef]
- Ali, G.; Srivastava, P.S.; Iqbal, M. Morphogenic response and proline content in Bacopa monniera cultures grown under copper stress. Plant Sci. 1998, 138, 191–195. [Google Scholar] [CrossRef]
- Tiwari, V.; Singh, B.D.; Tiwari, K.N. Shoot regeneration and somatic embryogenesis from different explants of Brahmi [Bacopa monniera (L.) Wettst.]. Plant Cell Rep. 1998, 17, 538–543. [Google Scholar] [CrossRef]
- Ali, G.; Srivastava, P.S.; Iqbal, M. Morphogenic and biochemical responses of Bacopa monniera cultures to zinc toxicity. Plant Sci. 1999, 143, 187–193. [Google Scholar] [CrossRef]
- Shrivastava, N.; Rajani, M. Multiple shoot regeneration and tissue culture studies on Bacopa monnieri (L.) Pennell. Plant Cell Rep. 1999, 18, 919–923. [Google Scholar] [CrossRef]
- Tiwari, V.; Tiwari, K.N.; Singh, B.D. Comparative studies of cytokinins on in vitro propagation of Bacopa monniera. Plant Cell Tiss. Organ Cult. 2001, 66, 9–16. [Google Scholar] [CrossRef]
- Ahuja, A.; Gupta, K.K.; Khajuria, R.K.; Sharma, A.; Kumar, A.; Sharada, M.; Kaul, M.K. Production of bacoside by multiple shoot cultures and in vitro regenerated plantlets of selected cultivar of Bacopa monnieri (L.) Wettst. In Plant Biotechnology & Its Applications in Tissue Culture; Kumar, A., Roy, S., Eds.; I.K. International Pvt. Ltd.: New Delhi, India, 2005; pp. 160–167. [Google Scholar]
- Binita, B.C.; Ashok, M.D.; Yogesh, T.J. Bacopa monnieri (L.) Pennell: A rapid, efficient and cost effective micropropagation. Plant Tiss. Cultbi. Otech. 2005, 15, 167–175. [Google Scholar]
- Tiwari, V.; Tiwari, K.N.; Singh, B.D. Shoot bud regeneration from different explants of Bacopa monniera (L.) Wettst. by trimethoprim and bavistin. Plant Cell Rep. 2006, 25, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Sharath, R.; Krishna, V.; Sathyanarayana, B.N.; Prasad, B.M.; Harish, B.G. High frequency regeneration through somatic embryogenesis in Bacopa monnieri (L.) Wettest, an important medicinal plant. Med. Aromat Plant Sci. Biotechnol. 2007, 1, 138–141. [Google Scholar]
- Banerjee, M.; Shrivastava, S. An improved protocol for in vitro multiplication of Bacopa monnieri (L.). World J. Microbiol. Biotechnol. 2008, 24, 1355–1359. [Google Scholar] [CrossRef]
- Debnath, M. Responses of Bacopa monnieri to salinity and drought stress in vitro. J. Med. Plants Res. 2008, 2, 347–351. [Google Scholar]
- Praveen, N.; Naik, P.M.; Manohar, S.H.; Nayeem, A.; Murthy, H.N. In vitro regeneration of brahmi shoots using semisolid and liquid cultures and quantitative analysis of bacoside A. Acta Physiol. Plant 2009, 31, 723–728. [Google Scholar] [CrossRef]
- Banerjee, M.; Modi, P. Micropropagation of Bacopa monnieri using cyanobacterial liquid medium. Plant Tiss. Cult. Biotech. 2010, 20, 225–231. [Google Scholar] [CrossRef]
- Ceasar, S.A.; Maxwell, S.L.; Prasad, K.B.; Karthigan, M.; Ignacimuthu, S. Highly efficient shoot regeneration of Bacopa monnieri (L.) using a two-stage culture procedure and assessment of genetic integrity of micropropagated plants by RAPD. Acta Physiol. Plant 2010, 32, 443–452. [Google Scholar] [CrossRef]
- Joshi, A.G.; Pathak, A.R.; Sharma, A.M.; Singh, S. High frequency of shoot regeneration on leaf explants of Bacopa monnieri. Environ. Exp. Biol. 2010, 8, 81–84. [Google Scholar]
- Parale, A.; Barmukh, R.; Nikam, T. Influence of organic supplements on production of shoot and callus biomass and accumulation of bacoside in Bacopa monniera (L.) Pennell. Physiol. Mol. Biol. Plants 2010, 16, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Kamal, B.; Rathi, N.; Chauhan, S.; Jadon, V.; Vats, N.; Gehlot, A.; Arya, S. In vitro rapid and mass multiplication of highly valuable medicinal plant Bacopa monnieri (L.) Wettst. Afr. J. Biotechnol. 2010, 9, 8318–8322. [Google Scholar]
- Rout, J.R.; Sahoo, S.L.; Ray, S.S.; Sethi, B.K.; Das, R. Standardization of an efficient protocol for in vitro clonal propagation of Bacopa monnieri L.—An important medicinal plant. J. Agric. Tech. 2011, 7, 289–299. [Google Scholar]
- Jain, N.; Sharma, V.; Ramawat, K.G. Shoot culture of Bacopa monnieri: Standardization of explant, vessels and bioreactor for growth and antioxidant capacity. Physiol. Mol. Biol. Plants 2012, 18, 185–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, J.; Ansari, R.; Syedy, M.; Khan, S.; Sharma, S.; Gupta, N.; Rathore, R.; Vaishnav, K. An effective method for high frequency multiple shoots regeneration and callus induction of Bacopa monnieri (L.) Pennel: An important medicinal plant. Asian J. Plant Sci. Res. 2012, 2, 620–626. [Google Scholar]
- Pandiyan, P.; Selvaraj, T. In vitro multiplication of Bacopa monnieri (L.) Pennell from shoot tip and nodal explants. J. Agric. Tech. 2012, 8, 1099–1108. [Google Scholar]
- Rao, S.; Rajkumar, P.; Kaviraj, C.; Parveen, P.A. Efficient plant regeneration from leaf explants of Bacopa monniera (L.) Wettst.: A threatened medicinal herb. Ann. Phytomed 2012, 1, 110–117. [Google Scholar]
- Sharma, M.; Raina, H.; Verma, V.; Mallubhotla, S.; Ahuja, A. Synthetic seeds a viable approach for conservation and propagation of phytoremediant herb: Bacopa monnieri (L.) Wettst. J. Env. Res. Dev. 2012, 7, 399–404. [Google Scholar]
- Tiwari, K.N.; Tiwari, V.; Singh, J.; Singh, B.D.; Ahuja, P. Synergistic effect of trimethoprim and bavistin for micropropagation of Bacopa monniera. Biol. Plant 2012, 56, 177–180. [Google Scholar] [CrossRef]
- Bhusari, S.; Wanjari, R.; Khobragade, P. Cost effective in vitro clonal propagation of Bacopa monnieri L. Penell. Int. J. Indig. Med. Plants 2013, 46, 1239–1244. [Google Scholar]
- Ghasolia, B.; Shandilya, D.; Maheshwari, R. Multiple shoot regeneration of Bacopa monnieri (L.) using cyanobacterial media- a novel approach and effect of phytoregulators on in vitro micropropagation. Int. J. Rec. Biotechnol. 2013, 1, 27–33. [Google Scholar]
- Jain, R.; Prasad, B.; Jain, M. In vitro regeneration of Bacopa monnieri (L.): A highly valuable medicinal plant. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 198–205. [Google Scholar]
- Karatas., M.; Aasim, M.; Dogan, M.; Khawar, K.M. Adventitious shoot regeneration of the medicinal aquatic plant water hyssop (Bacopa monnieri L. Pennell) using different internodes. Arch. Biol. Sci. 2013, 65, 297–303. [Google Scholar]
- Kaur, J.; Nautiyal, K.; Pant, M. In vitro propagation of Bacopa monnieri (L.) Wettst A medicinally priced herb. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 131–138. [Google Scholar]
- Begum, T.; Mathur, M. In vitro regeneration of Catharanthus roseus and Bacopa monnieri and their survey around Jaipur District. Int. J. Pure Appl. Biosci. 2014, 2, 210–221. [Google Scholar]
- Jain, A.; Pandey, K.; Benjamin, D.; Meena, A.K.; Singh, R.K. In vitro approach of medicinal herb: Bacopa monnieri. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 12088–12093. [Google Scholar]
- Karatas, M.; Aasim, M. Efficient in vitro regeneration of medicinal aquatic plant water hyssop (Bacopa monnieri L. Pennell). Pak. J. Agric. Sci. 2014, 51, 667–672. [Google Scholar]
- Naik, P.M.; Patil, B.R.; Kotagi, K.S.; Kazi, A.M.; Lokesh, H.; Kamplikoppa, S.G. Rapid one step protocol for in vitro regeneration of Bacopa monnieri (L.). J. Cell Tissue Res. 2014, 14, 4293–4296. [Google Scholar]
- Umesh, T.G.; Sharma, A.; Rao, N. Regeneration potential and major metabolite analysis in nootropic plant- Bacopa monnieri (L.) Pennell. Asian J. Pharm. Clin. Res. 2014, 7, 134–136. [Google Scholar]
- Behera, S.; Nayak, N.; Shasmita, D.P.; Naik, S.K. An efficient micropropagation protocol of Bacopa monnieri (L.) Pennell through two-stage culture of nodal segments and ex vitro acclimatization. J. Appl. Biol. Biotech. 2015, 3, 16–21. [Google Scholar]
- Mishra, S.K.; Tiwari, K.N.; Shivna, P.L.; Mishra, A.K. Micropropagation and comparative phytochemical, antioxidant study of Bacopa monnieri (L.) Pennell. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 902–912. [Google Scholar]
- Sharma, M.; Gupta, R.; Khajuria, R.K.; Mallubhotla, S.; Ahuja, A. Bacoside biosynthesis during in vitro shoot multiplication in Bacopa monnieri (L.) Wettst. grown in Growtek and air lift bioreactor. Indian J. Biotechnol. 2015, 14, 547–551. [Google Scholar]
- Croom, L.A.; Jackson, C.L.; Vaidya, B.N.; Parajuli, P.; Joshee, N. Thin Cell Layer (TCL) Culture System for Herbal Biomass Production and Genetic Transformation of Bacopa monnieri L. Wettst. Am. J. Plant Sci. 2016, 7, 1232–1245. [Google Scholar] [CrossRef] [Green Version]
- Hegazi, G.A.E.M. In vitro preservation of Bacopa monnieri (L.) Pennell as a rare medicinal plant in Egypt. J. Basic Appl. Sci. Res. 2016, 6, 35–43. [Google Scholar]
- Karatas, M.; Aasim, M.; Dazkirli, M. Influence of light-emitting diodes and benzylaminopurin on adventitious shoot regeneration of water hyssop (Bacopa monnieri (L.) Pennell) in vitro. Arch. Biol. Sci. 2016, 68, 501–508. [Google Scholar] [CrossRef]
- Khilwani, B.; Kaur, A.; Ranjan, R.; Kumar, A. Direct somatic embryogenesis and encapsulation of somatic embryos for in vitro conservation of Bacopa monnieri (L.) Wettst. Plant Cell Tiss. Organ Cult. 2016, 127, 433–442. [Google Scholar] [CrossRef]
- Pothiaraj, G.; Ebenezer, R.S.; Christdas, E.J.; Shakila, H. Comparative analysis on the effect of seaweed liquid extracts and commercial plant growth regulators on in vitro propagation of Bacopa monnieri. Int. J. Res. Biol. Sci. 2016, 5, 1–9. [Google Scholar]
- Wangdi, K.; Sarethy, I.P. Evaluation of micropropagation system of Bacopa monnieri L. in liquid culture and its effect on antioxidant properties. J. Herbs Spices Med. Plants 2016, 22, 69–80. [Google Scholar] [CrossRef]
- Haque, S.K.M.; Chakraborty, A.; Dey, D.; Mukherjee, S.; Nayak, S.; Ghosh, B. Improved micropropagation of Bacopa monnieri (L.) Wettst. (Plantaginaceae) and antimicrobial activity of in vitro and ex vitro raised plants against multidrug-resistant clinical isolates of urinary tract infecting (UTI) and respiratory tract infecting (RTI) bacteria. Clin. Phytosci. 2017, 3, 17. [Google Scholar]
- Rency, A.S.; Satish, L.; Pandian, S.; Rathinapriya, P.; Ramesh, M. In vitro propagation and genetic fidelity analysis of alginate-encapsulated Bacopa monnieri shoot tips using Gracilariasalicornia extracts. J. Appl. Phycol. 2017, 29, 481–494. [Google Scholar] [CrossRef]
- Sarkar, S.; Jha, S. Morpho-histological characterization and direct shoot organogenesis in two types of explants from Bacopa monnieri on unsupplemented basal medium. Plant Cell Tiss. Organ Cult. 2017, 130, 435–441. [Google Scholar] [CrossRef]
- Faisal, M.; Alatar, A.A.; El-Sheikh, M.A.; Abdel-Salam, E.M.; Qahtan, A.A. Thidiazuron induced in vitro morphogenesis for sustainable supply of genetically true quality plantlets of Brahmi. Ind. Crop. Prod. 2018, 118, 173–179. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Goel, A.; Kaur, A.; Kumar, A. Biochemical and histological changes during in vitro rooting of microcuttings of Bacopa monnieri (L.) Wettst. Acta Physiol. Plant 2018, 40, 64. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Ogawa, Y.; Iwase, A.; Sugimoto, K. Plant regeneration: Cellular origins and molecular mechanisms. Development 2016, 143, 1442–1451. [Google Scholar] [CrossRef] [Green Version]
- Deepa, A.V.; Anju, M.; Dennis Thomas, T. The Applications of TDZ in Medicinal Plant Tissue Culture. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Ahmad, N., Faisal, M., Eds.; Springer: Nature, Singapore Pte Ltd.: Singapore, 2018. [Google Scholar]
- Dinani, E.T.; Shukla, M.R.; Turi, C.E.; Sullivan, J.A.; Saxena, P.K. Thidiazuron: Modulator of Morphogenesis In vitro. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Ahmad, N., Faisal, M., Eds.; Springer: Nature, Singapore Pte Ltd.: Singapore, 2018. [Google Scholar]
- Subashri, B.; Pillai, Y.J.K. In vitro regeneration of Bacopa monnieri (L.) Pennel.- A multipurpose medicinal plant. Int. J. Pharm. Sci. 2014, 6, 559–563. [Google Scholar]
- Jha, S.; Sen, S. Nuclear changes and organogenesis during callus culture of Urginea indica Kunth., Indian squill. Cytologia 1987, 52, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Jha, S.; Sen, S. Induction of mitosis in polytene nuclei and hormonal effect on nuclear changes during callus initiation in diploid Urginea indica Kunth. (liliaceae). Genetica 1990, 80, 9–15. [Google Scholar] [CrossRef]
- Samaddar, T.; Nath, S.; Halder, M.; Sil, B.; Roychowdhury, D.; Sen, S.; Jha, S. Karyotype analysis of three important traditional Indian medicinal plants, Bacopa monnieri, Tylophoraindica and Withaniasomnifera. Nucleus 2012, 55, 17–20. [Google Scholar] [CrossRef]
- Dey, A.; Hazra, A.K.; Nongdam, P.; Nandy, S.; Tikendra, L.; Mukherjee, A.; Banerjee, S.; Mukherjee, S.; Pandey, D.K. Enhanced Bacoside content in polyamine treated in vitro raised Bacopa monnieri (L.) Wettst. S. Afr. J. Bot. 2019, 123, 259–269. [Google Scholar] [CrossRef]
- Largia, M.J.; Pothiraj, G.; Shilpha, J.; Ramesh, M. Methyl jasmonate and salicylic acid synergism enhances bacoside A content in shoot cultures of Bacopa monnieri (L.). Plant Cell Tiss. Organ Cult. 2015, 122, 9–20. [Google Scholar] [CrossRef]
- Chakravarty, A.K.; Sarkar, T.; Nakane, T.; Kawahara, N.; Masuda, K. New phenylethanoid glycosides from Bacopa monniera. Chem. Pharm. Bull. 2002, 50, 1616–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, C.C.; Lin, S.J.; Cheng, J.T.; Hsu, F.L. Bacopaside III, bacopasaponin G and bacopasides A, B, and C from Bacopa monniera. J. Nat. Prod. 2002, 65, 1759–1763. [Google Scholar] [CrossRef]
- Deepak, M. The need for establishing identities of ‘bacoside A and B’? The putative major bioactive saponins of Indian medicinal plant. Phytomedicine 2003, 11, 264–268. [Google Scholar] [CrossRef]
- Singh, H.K.; Rastogi, R.P.; Srimal, R.C.; Dhawan, B.N. Effect of bacosides A and B on avoidance responses in rats. Phytother. Res. 1988, 2, 70–75. [Google Scholar] [CrossRef]
- Singh, H.K.; Dhawan, B.N. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn. (Brahmi). Indian J. Pharm. 1997, 29, 359. [Google Scholar]
- Kulshreshtha, D.K.; Rastogi, R.P. Bacogenin-A1: A novel dammarane triterpene sapogenin from Bacopa monniera. Phytochemistry 1973, 12, 887–892. [Google Scholar] [CrossRef]
- Singh, H.K.; Dhawan, B.N. Effect of Bacopa monnieri Linn. (Brahmi) extract on avoidance responses in rat. J. Ethnopharmacol. 1982, 5, 205–208. [Google Scholar] [CrossRef]
- Jain, P.; Kulshreshtha, D.K. Bacoside A1, A minor saponin from Bacopa monniera. Phytochemistry 1993, 33, 449–451. [Google Scholar] [CrossRef]
- Rastogi, S.; Pal, R.; Kulshreshtha, D.K. Bacoside A3-a triterpenoid saponin from Bacopa monniera. Phytochemistry 1994, 36, 133–137. [Google Scholar] [CrossRef]
- Chakravarty, A.K.; Garai, S.; Masuda, K.; Nakane, T.; Kawahara, N. Bacopasides III-V: Three new triterpenoid glycosides from Bacopa monniera. Chem. Pharm. Bull. 2003, 51, 215–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Kong, D.Y.; Peng, L.; Zhang, W.D. A new triterpenoid saponin from Bacopa monniera. Chin. Chem. Lett. 2009, 20, 569–571. [Google Scholar] [CrossRef]
- Murthy, P.B.; Raju, V.R.; Ramakrisana, T.; Chakravarthy, M.S.; Kumar, K.V.; Kannababu, S.; Subbaraju, G.V. Estimation of twelve bacopa saponins in Bacopa monnieri extracts and formulations by high-performance liquid chromatography. Chem. Pharm. Bull 2006, 54, 907–911. [Google Scholar] [CrossRef] [Green Version]
- Garai, S.; Mahato, S.B.; Ohtani, K.; Yamasaki, K. Dammarane type triterpenoid saponins from Bacopa monniera. Phytochemistry 1996, 42, 815–820. [Google Scholar] [CrossRef]
- Garai, S.; Mahato, S.B.; Ohtani, K.; Yamasaki, K. Bacopasaponin D—A pseudojujubogenin glycoside from Bacopa monniera. Phytochemistry 1996, 43, 447–449. [Google Scholar] [CrossRef]
- Mahato, S.B.; Garai, S.; Chakravarty, A.K. Bacopasaponins E and F: Two jujubogeninbisdesmosides from Bacopa monniera. Phytochemistry 2000, 53, 711–714. [Google Scholar] [CrossRef]
- Rastogi, S.; Kulshreshtha, D.K. Bacoside A2–A triterpenoid saponin from Bacopa monniera. Ind. J. Chem. 1999, 38, 353–356. [Google Scholar]
- Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K.; Nakane, T.; Kawahara, N. Bacopaside I and II: Two pseudojujubogenin glycosides from Bacopa monniera. Phytochemistry 2001, 58, 553–556. [Google Scholar] [CrossRef]
- Mandal, S.; Mukhopadhyay, S.; Bacopasaponin, H. A pseudojujubogenin glycoside from Bacopa monniera. Indian J. Chem. 2004, 43, 1802–1804. [Google Scholar]
- Bhandari, P.; Kumar, N.; Singh, B.; Kaur, I. Dammarane triterpenoid saponins from Bacopa monnieri. Can. J. Chem. 2009, 87, 1230–1234. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, Y.; de Kong, Y.; Zhang, W.D. Antitumor activities of dam- marane triterpene saponins from Bacopa monniera. Phytother. Res. 2010, 24, 864–868. [Google Scholar] [PubMed]
- Rohini, G.; Devi, S. Bacopa monniera extract induces apoptosis in murine sarcoma cells (s-180). Phytother. Res. 2008, 12, 1595–1598. [Google Scholar] [CrossRef] [PubMed]
- Charles, P.D.; Ambigapathy, G.; Geraldine, P.; Akbarasha, M.A.; Rajan, K.E. Bacopa monniera leaf extract up-regulates tryptophan hydroxylase (TPH2) and serotonin transporter (SERT) expression: Implications in memory formation. J. Ethnopharmacol. 2011, 134, 55–61. [Google Scholar] [CrossRef]
- Ahirwar, S.; Tembhre, M.; Gour, S.; Namdeo, A. Anticholinesterase efficacy of Bacopa monnieri against the brain regions of rat—a novel approach to therapy for Alzheimer’s disease. Asian J. Exp. Sci. 2012, 26, 65–70. [Google Scholar]
- Raghav, S.; Singh, H.; Dalal, P.K.; Srivastava, J.S.; Asthana, O.P. Randomized controlled trial of standardized Bacopa monniera extract in age- associated memory impairment. Indian J. Psychiatry 2006, 48, 238–242. [Google Scholar]
- Viji, V.; Helen, A. Inhibition of lipoxygenases and cyclooxygenase-2 en- zymes by extracts isolated from Bacopa monniera (L.) Wettst. J. Ethnopharmacol. 2008, 118, 305–311. [Google Scholar] [CrossRef]
- Anbarasi, K.; Kathirvel, G.; Vani, G.; Jayaraman, G.; Devi, S.C.S. Cigarette smoking induces heat shock protein 70 kDa expression and apoptosis in rat brain: Modulation by bacoside A. Neuroscience 2006, 138, 1127–1135. [Google Scholar] [CrossRef]
- Janani, P.; Sivakumari, K.; Parthasarathy, C. Hepatoprotective activity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats. Cell Biol. Toxicol. 2009, 25, 425–434. [Google Scholar] [CrossRef]
- Anbarasi, K.; Sabitha, K.E.; Devi, C.S.S. Lactate dehydrogenase isoenzyme patterns upon chronic exposure to cigarette smoke: Protective effect of bacoside A. Environ. Toxicol. Pharmacol. 2005, 20, 345–350. [Google Scholar] [CrossRef]
- Anbarasi, K.; Vani, G.; Balakrishna, K.; Devi, S.C.S. Creatine kinase isoenzyme patterns upon chronic exposure to cigarette smoke: Protective effect of bacoside A. Vasc. Pharm. 2005, 42, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Rauf, K.; Subhan, F.; Abbas, M.; Badshah, A.; Ullah, I.; Ullah, S. Effect of bacopasides on acquisition and expression of morphine tolerance. Phytomedicine 2011, 18, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Uabundit, N.; Wattanathorn, J.; Mucimapura, S.; Ingkaninan, K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. Journal of Ethnopharmacology. 2010, 127, 26–31. [Google Scholar] [CrossRef]
- Kikusaki, H.; Nakatani, N. Antioxidant effect of some ginger constituents. J. Food Sci. 1993, 58, 1407–1410. [Google Scholar] [CrossRef]
- Vohra, S.B.; Khanna, T.; Athar, M.; Ahmed, B. Analgesic activity of bacosine, a new triterpene isolated from Bacopa monnieri. Fitoterapia 1997, 68, 361–365. [Google Scholar]
- Tripathi, Y.B.; Chaurasia, S.; Tripathi, E.; Upadhyay, A.; Dubey, G.P. Bacopa monniera Linn. as an antioxidant: Mechanism of action. Indian J. Exp. Biol. 1996, 34, 523–526. [Google Scholar]
- Bhattacharya, S.K.; Bhattacharya, A.; Kumar, A.; Ghosal, S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother. Res. 2000, 14, 174–179. [Google Scholar] [CrossRef]
- Pawar, R.; Gopalakrishnan, C.; Bhutani, K.K. Dammarane triterpene saponin from Bacopa monniera as the superoxide inhibitor in polymorphonuclear cells. Planta Med. 2001, 67, 752–754. [Google Scholar] [CrossRef]
- Sumathy, T.; Subramanian, S.; Govindasamy, S.; Balakrishna, K.; Veluchamy, G. Protective role of Bacopa monniera on morphine induced hepatotoxicity in rats. Phytother. Res. 2001, 15, 643–645. [Google Scholar] [CrossRef]
- Volluri, S.S.; Bammidi, S.R.; Chippada, S.C.; Vangalapati, M. In vitro antioxidant activity and estimation of total phenolic content in methanolic extract of Bacopa monniera. Rasayan J. Chem. 2011, 4, 381–386. [Google Scholar]
- Mallick, M.N.; Akhtar, M.S.; Najm, M.Z.; Tamboli, E.T.; Ahmad, S.; Husain, S.A. Evaluation of anticancer potential of Bacopa monnieri L. against MCF-7 and MDA-MB 231 cell line. J. Pharm. Bioallied. Sci. 2015, 7, 325. [Google Scholar]
- Pawar, R.S.; Khan, S.I.; Khan, I.A. Glycosides of 20-deoxy derivatives of jujubogenin and pseudojujubogenin from Bacopa monniera. Planta Med. 2007, 73, 380–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivaramakrishna, C.; Rao, C.V.; Trimurtulu, G.; Vanisree, M.; Subbaraju, G.V. Triterpenoid glycosides from Bacopa monnieri. Phytochemistry 2005, 66, 2719–2728. [Google Scholar] [CrossRef] [PubMed]
- Mclaughlin, J.L.; Rogers, L.L.; Anderson, J.E. The uses of biological assays to evaluate botanicals. Drug Inf. J. 1998, 32, 513–524. [Google Scholar] [CrossRef]
- D’Souza, P.; Deepak, M.; Rani, P.; Kadamboor, S.; Mathew, A.; Chandrashekar, A.P.; Agarwal, A. Brine shrimp lethality assay of Bacopa monnieri. Phytother. Res. 2002, 16, 197–198. [Google Scholar] [CrossRef]
- Jain, P.; Khanna, N.K.; Trehan, N.; Pendse, V.K.; Godhwani, J.L. Antiinflammatory effects of an Ayurvedic preparation, Brahmi Rasayan, in rodents. Indian J. Exp. Biol. 1994, 32, 633–636. [Google Scholar]
- Holcomb, L.A.; Dhanasekaran, M.; Hitt, A.R.; Young, K.A.; Riggs, M.; Manyam, B.V. Bacopa monniera extract reduces amyloid levels in PSAPP mice. J. Alzheimers Dis. 2006, 9, 243–251. [Google Scholar] [CrossRef]
- Ajalus, S.M.; Chakma, N.; Rahman, M.; Salahuddin, M.; Kumar, S.S. Assessment of analgesic, antidiarrhoeal and cytotoxic activity of ethanolic extract of the whole plant of Bacopa monnieri Linn. Int. Res. J. Pharm. 2013, 3, 98–101. [Google Scholar]
- Mathur, A.; Verma, S.K.; Purohit, R.; Singh, S.K.; Mathur, D.; Prasad, G.; Dua, V.K. Pharmacological investigation of Bacopa monnieri on the basis of antioxidant, antimicrobial and anti-inflammatory properties. J. Chem. Pharm. Res. 2010, 2, 191–198. [Google Scholar]
- Rao, C.V.; Sairam, K.; Goel, R.K. Experimental evaluation of Bocopamonniera on rat gastric ulceration and secretion. Indian J. Physiolpharmacol. 2000, 44, 435–441. [Google Scholar]
- Subhan, F.; Abbas, M.; Rauf, K.; Arfan, M.; Sewell, R.D.; Ali, G. The role of opioidergic mechanism in the activity of Bacopa monnieri extract against tonic and acute phasic pain modalities. Pharmacologyonline 2010, 3, 903–914. [Google Scholar]
- Devishree, R.A.; Saravana, K.; Ashish, R. Short term effect of Bacopa monnieri on memory—A brief review. J. Pharm. Res. 2017, 11, 1447–1450. [Google Scholar]
- Knopman, D.S. Current treatment of mild cognitive impairment and Alzheimer’s disease. Curr. Neurol. Neurosci. Rep. 2006, 6, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Saoji, A.; Kumar, N.; Thawani, V.; Tiwari, M.; Thawani, M. Effect of Bacopa monnieri on cognitive functions in Alzheimer’s disease patients. Int. J. Collab. Res. Intmed. Public Health 2011, 3, 285–293. [Google Scholar]
- Samanta, D.; Mallick, B.; Roy, D. In vitro clonal propagation, organogenesis and somaclonal embryogenesis in Bacopa monnieri (L.) Wettst. Plant Sci. 2019, 6, 442–449. [Google Scholar]
Explant-Source/Type | Culture Medium, PGRs and Additives | Remarks, Experimental Outcome and Maximum Productivity, Acclimatization etc. | References |
---|---|---|---|
Stem segments with nodes (20 mm) of ex vitro plants | MS + 0.2 mg L−1 NAA + 0.5 mg L−1 BA + 50 mg L−1 glutamine + 75–100 µM CuSO4 (SIM). | 15.52 ± 2.77 shoots/nodal explant within 4-w of culture on SIM. At 100 µM ofCuSO4 maximum multiplication could be achieved and tolerant cultures could be raised. | [20] |
Terminal shoots bearing 4–5 nodes from field-grown plants | MS + 2.0 mg L−1 BA (SIM); MS + 0.1 mg L−1 BA + 0.2 mg L−1 IAA (SELM). MS + 1.0 mg L−1 NAA (RIM). MS + 0.5 mg L−1 BA (SEIM; callus explants). | 79 shoots/leaf explant, 20 shoots/node and 26 shoots/internode formed on SIM within 4-w. 100% of the shoots rooted on RIM. SE developed after 4-w of culture on SEIM. Histological analysis of the calli revealed typical heart-shaped and cotyledonary stage somatic embryos. Plantlets acclimatized in sterilized soilrite with 95% survival rate. | [21] |
Stem segments with nodes (20 mm) of ex vitro plants | MS + 0.2 mg L−1 NAA + 0.5 mg L−1 BA + 50 mg L−1 glutamine + 400 µM ZnSO4 | This study was on effect of ZnSO4 on the morphogenic response. 24 shoots/culture formed within 4-w on SIM containing 400 µM ZnSO4. 100% of shoots rooted. Proline and protein accumulated as a sequel to zinc stress. | [22] |
Explants from field-grown plants | MS + 2 µMBA (SIM). | A thick mat of shoot buds formed on 90–100% of the explant surface after 3–4 weeks on SIM. The potency was expressed as percentage of the surface area of the explants showing organogenesis. | [23] |
Nodal explants (1.0 cm) of field grown plants | MS + 6.8 μM TDZ (SIM)/+2.2 μM BA (SMM)/4.9 μM IBA (RIM). | 92 shoot buds/leaf explant, 42 adventitious shoot buds/node and 28 adventitious shoot buds/internode after 7-w of culture on SIM. 129 shoot buds/leaf explant on SMM after 3 subcultures (each with 4 weeks duration). 100% of shoots rooted on RIM within 2-w. Acclimatization in sterilized soilrite with 100% survival rate. | [24] |
Nodal segments (~0.5 cm) with single axillary buds of field grown plants | MS + 1.0 mg L–1 BA + 1.0 mg L–1 IBA (SIM, SMM). | 18.35 ± 2.15 shoots/culture formed within 4-w. Regenerated shoots successfully rooted. HPLC and LC-MS analysis identified Bacoside A3 and A2. The total bacosides ranged between 1.76–2.70% on dry weight basis. Acclimatization in sand: garden soil potting mixture (1:1) with 90% survival rate. | [25] |
Axillary nodes, young leaves and internodes of 3-m-old ex vitro plants | Liquid MS + 1.1 μM BA + 0.2 μM IAA (SIM, SMM, RIM; leaf explant). | 110 shoots/leaf explant formed within 3-w on SIM while shoot induction was very low from nodal explants (7–8 shoots/node). Acclimatization in sand, soil and farmyard manure (1:1:1) with 98% survival rate. HPLC revealed a phytochemical profile similar to that of the market sample and mother plants. | [26] |
Nodal segments (5–6 nodes; 7–8 cm) of ex vitro plants | MS + 2.0 mg L−1 BA (SIM). MS + IBA (0.5–2.0 mg L−1) (RIM). | Nodal explants formed 9.4 shoots/explant after 7-d. on SIM while leaf explants formed 4.3 shoots/explants after 15-d. | [10] |
Nodal explants internodes and leaf of 4-week-old in vitro grown shoots | MS + 300 mg L−1 BVN (SIM)/+0.2 mg L−1 IAA + 0.1 mg L−1 BA (SELM)/ | 100% of explants formed shoots with 98 shoots/internode explant, 81 shoots/leaf explant and 21 shoots/nodal explant on SIM within 4-w. Optimum shoot growth in SELM. Acclimatization in sterilized soilrite with 85% survival rate in field. | [27] |
Tender leaves of 2-m old greenhouse plants | MS + 0.5 mg L−1 2,4-D (CIM, SEIM). | Embryogenic callus after 60 d with 42 embryoids/callus on SEIM, clearly identified globular, cordate, torpedo embryos. 28 rooted plantlets/embryoid formed on SEGM within 45-d. 98% survival rate. | [28] |
Internodes (2.5 cm) of 2–3-month-old ex vitro plants | MS + 1.0 mg L−1 BA + 0.5 mg L−1 Kn (SIM). Liquid MS + 1.5 mg L−1 NAA (RIM). | 18 shoots/explant formed and an average of 324 shoots/explant were generated after 3 subcultures. 12 ± 1.73 roots/shoot formed on RIM. Plantlets acclimatized in garden soil: vermiculite: sand (1:1:1) with 100% survival rate in field. | [29] |
Shoot apex and nodes (1–1.2 cm) of young greenhouse plants | MS + 5.0 mg L−1 BA + 0.2% (w/v) NaCl/10% Mannitol. | 20 shoots/culture without root formed after 15-d under salt stress. Shoots with 4–5 roots/explant formed after 15-d under drought stress. | [30] |
Young leaves of field grown plants→2% NaOCl 5 min→SDW→0.1% HgCl2 2 min | MS + 2 mg L−1 Kn (SIM). Liquid MS + 2 mg L−1 Kn (SMM). pH 5.8. 2% sucrose. 0.7% agar. | An optimum of 155 shoots proliferated/explant at the end of 8th week on SMM. HPLC analysis revealed bacoside A contents were highest in case of shoots regenerated in SMM (11.92 mg g−1 DW). | [31] |
Nodal explants (1.5 cm) of 2–3-m-old ex vitro plants | MS + Aulosira fertilissima extract + 0.44 gm/L CaCl2 (SIM). MS + A. fertilissima extract + 1.0 mg L−1 Kn + 0.44 gm/l CaCl2 (SMM, RIM). pH 5.8. 3% sucrose. 0.8% agar | 20 shoots/nodal explant on SIM within 2 w. 56 shoots/explant formed on SMM after 4-w. 100% of shoots rooted with 15 ± 2.20 roots/shoot. Plantlets acclimatized in garden soil, mixed with vermiculite and sand (1:1:1) and successfully transferred to the field with 100% survival rate. | [32] |
Leaf, internode shoot buds of ex vitro plants | MS + 1.5 mg L−1 TDZ + 0.5 mg L−1 NAA (SIM). MS + 0.5 mg L−1 BA (SMM). ½ MS + 1.0 mg L−1 IBA + 0.5 mg L−1 Phloroglucinol (RIM). | 56 shoots/leaf explant and 49 shoots/internode explant after 3-w. 135 shoots/leaf explant and 112 shoots/internode explant on SMM after 4-w. 16 roots/shoot on RIM after 4-w. Acclimatization in sterilized vermicompost supplied with diluted MS basal salts with a 100% survival rate. RAPD profile confirmed clonal fidelity. | [33] |
Apical portions of healthy twigs of ex vitro plants bearing leaves up to the fourth node were excised | MS + 6 μM BA + 3% sucrose (SIM). Liquid ½ MS + 2 μM IBA + 1% sucrose (RIM) | 63 shoots/explant after 8-w. Rooting of micro shoots within 2-w. Plantlets acclimatized in sand: soil (3:1) mixture under greenhouse conditions. | [34] |
Leaves (0.75 cm2) of ex vitro plants | Liquid MS + 5 µM BA + 100 µM pyruvic acid (SIM). MS + 5µM NAA + 1 µM 2,4-D + 100 µM pyruvic acid | 100 µM pyruvic acid effectively enhanced the production of bacoside-A in shoot as well as callus biomass. The bacoside-A content in in vitro raised shoot biomass was 1.2 times higher as compared to shoot biomass of naturally grown plants. | [35] |
Nodal segments of ex vitro plants | MS + 0.1 mg L−1 BA (SIM, SMM). MS + 0.15 mg L−1 IBA (RIM). | 100% of cultures showed axillary bud break; 41 shoots/explant after 4-w. 100% shoots formed roots with 24 roots/shoot within 3–4 w. Plantlets acclimatized in a mixture of sand, farmyard manure and soil (1:1:1) irrigated with ½ MS medium and finally shifted to shade house. | [36] |
Leaf explants of ex vitro plants | MS + 2.0 mg L−1 BA + 0.5 mg L−1 NAA + 3% sucrose (CIM, SIM). ½ MS + 2.0 mg L−1 IAA + 2% sucrose (RIM). | 61% callus induced formed shoots with 16 shoots/callus after 5-w. 6 roots/shoot formed on RIM after 3-w. Acclimatization in sterilized sand: soil: dry powdered cow dung (1:1:1) with mild irrigation at 2-day interval and supplied with ¼ strength MS inorganic solution twice a week and transferred to filed with 86% survival rate. | [37] |
Leaf and stem of ex vitro plants | MS + 2.5 mg L−1 BA + 0.01 mg L−1 IAA (SIM). Liquid MS + 2.5 mg L−1 BA + 0.01 mg L−1 IAA (SIM; node) in bioreactor. | 20 nodal explant/40 mL medium was optimal for high explant response. Maximum growth index (10.0) was recorded in bioreactor producing ~2000 shoots/L with 16.5 g/L DW. The total phenolic content and antioxidant capacity of in vitro grown plants was higher to that recorded for in vivo plants. | [38] |
Nodes of ex vitro plants | MS + 0.25 mg L−1 2,4-D + 0.5 mg L−1 Kn (CIM; leaf petiole). | Plantlets acclimatized in culture bottles ¼th filled with Soilrite composition (soil: sand: peat moss) and irrigated with ¼ MS salt solution and then shifted to misthouse with 90% survival rate. | [39] |
Nodes, shoot tip of 3-month-old ex vitro plants | MS + BA + Kn + NAA (each 1.0 mg L−1 SIM).MS + 1.0 mg L−1 IBA + 0.5 mg L−1 NAA (RIM). | 100% of explants formed shoots after 4-w and rooted on RIM with after 4-w. Acclimatization in sterile soil and perlite (1:1) with 96% survival rate in field. Phytochemical profile similar to that of the field grown plants. | [40] |
Leaf and internodes of ex vitro plants | MS + 2.0 mg L−1 BA (SIM). MS + 0.5 mg L−1 GA3 (SMM). ½ MS + 2.0 mg L−1 IBA (RIM). | Shoot organogenesis with 104 shoots/leaf explant and 89shoots/internode explant on SIM. 100% of shoots rooted with 57 roots/shoot and on RIM. Acclimatization in sterile vermiculate: sand: soil (1:2:2) with 90% survival rate in greenhouse. | [41] |
Shoot tips (0.7–1.2 cm) of field grown plants | MS + 1.0 mg L−1 BA. | 86% of encapsulated nodal explants germinated into plantlets after 6-8 w. Acclimatization in a potting mix of sand: soil (1:1) and finally transferred to net house. | [42] |
Shoots of ex vitro plants | MS + TMP + BVN (each 200 mg dm−3; SIM). MS + 0.2 mg dm−3 IAA + 0.1 mg dm−3 BA (SELM). MS + 0.5 mg dm−3 IBA (RIM). | 135 shoot buds/internode explant, 90 shoot buds/leaf explant and 50 axillary shoots/nodal explant on SIM. Optimum shoot growth on SELM. 90% of elongated shoots rooted on RIM. Acclimatization in soilrite with 90% survival rate in field. | [43] |
Axillary nodes, young leaves and shoot tips of 3-m-old ex vitro plants | 70% strength MS + 3 mg L−1 Kn + 0.5 mg L−1 IBA (SIM). | 100% of explants formed shoots (low multiplication rate) and rooted plantlets acclimatized in sand, soil and farmyard manure in the ratio of 1:1:1. | [44] |
Shoots (5–6 cm) with node explants of ex vitro plants | Cyanobacterial medium + 2 mg L−1 Kn (SIM). | 80% of explants formed shoots with very low multiplication rate. | [45] |
Nodes, internodes, shoot tips and leaves of green house plants | MS + 1.0 mg L−1 BA + 0.5 mg L−1 NAA (SMM). MS + 0.25 mg L−1 IBA (RIM). | 85% nodal explants showed multiple shoot formation; 42 shoots/explant on SMM. 86% shoots rooted. Acclimatization in sand: compost mixture (1:2) in the greenhouse and with 70–80% survival rate in field. | [46] |
Twigs with 4–5 nodes with attached leaves of outdoor plants | MS + BA + NAA (each 0.25 mg L−1; SIM). MS + 0.25 mg L−1 IBA (RIM). | 100% of explants showed callus induction and shoot regeneration within 1 w. 23 shoots/internode and 21 shoots/leaf explant after 6 w. 100% shoots rooted in RIM and survived (100%) after acclimatization. | [47] |
Nodes of ex vitro plants | MS + 1.0 mg L−1 BA + 3% sucrose (SIM, SMM). ½ MS + 1.0 mg L−1 IBA + 2% sucrose (RIM). | 5.0 axillary shoots/explant on SIM after 4 w. 20 shoots/induced axillary shoot formed after 4 w. 10 roots/shoot formed on RIM after 4 w. Acclimatization in a mixture of soil: sand: manure (1:1:1) with 100% survival rate in field. | [48] |
Cotyledonary and epicotyledonary nodes obtained from axenic 15-d-old seedlings | MS + 0.5 mg L−1 Kn + 1.0 mg L−1 BA (SMM). ¼ MS + 2.0 mg L−1 IBA + 1.0% sucrose (RIM). | 95% of explants formed shoots and rooted. Mulitiplication rate low. Acclimatization in soilrite with 90% survival rate when transferred to mist house. | [49] |
Young and juvenile nodal segments of ex vitro plants | MS + 1.0 mg L−1 BA (SIM). MS + 1.5 mg L−1 BA (SMM, SELM). ½ MS + 1.0 mg L−1 IBA (RIM). | 57% of explants formed shoots with 2.64 shoots/explant within 20 d. 90% of shoots rooted within 10 d. Plantlets hardened in vitro on liquid ¼ MS + 2% sucrose. Acclimatization in poly bags containing a mixture of soil and sand (1:1). | [50] |
Twigs with 4–5 nodes of ex vitro plants | MS + 2.0 mg L−1 BA (SIM). MS + (0.25, 0.5, 1.0) mg L−1 IBA (RIM). | Direct adventitious shoot regeneration within 7–8 days of culture; 26 shoots/explant after 8 w.100% rooting on RIM after 2-w. Acclimatization in pots containing organic matter or jars containing water (pH 7). | [51] |
Young leaves, nodes and internodes of ex vitro plants | MS + 2.0 mg L−1 Kn (SIM, RIM). | 72 shoots/leaf explant, 67 shoots/internode explant and 64 shoots/node explant after 8 w. Acclimatization in sterilized soil-rite with 95% survival rate. | [52] |
Leaf of ex vitro plant | MS + 2 mg L−1 Kn (SIM; leaf). MS (SELM, RIM). MS + 1 mg L−1 2,4-D (CIM). | 126 shoots/leaf explant formed after 45-d. Micro shoots elongated and rooted on RIM in 15-d. Acclimatization in soil rite (mixture of coco brick, cocopeat perlite and vermiculite). Detection of Bacopaside I and II in micro shoots by HPLC. | [53] |
Nodal segments (1.0–1.5 cm) of ex vitro plants | MS + 3.0 mg L−1 BA (SIM)/+ 1.0 mg L−1 + GA3 (SMM, SELM). ½ MS + 0.2 mg L−1 IBA (RIM). | Shoot bud induction after 4-w. 114 shoots/explant with shoot length 6.4 cm after 3-w of sub-culture. Shoots rooted with 10 roots/shoot on RIM after 2-w. Acclimatization in plastic pots containing garden soil with 100% survival rate. | [54] |
Twigs with 3–4 nodes of ex vitro plants | MS + 5.0 μg/mL BA (SIM, SMM). MS + NAA/IAA + 2% sucrose (RIM). | Low rate of multiplication. Acclimatization in soil rite: red sand: garden soil (3:2:1). | [55] |
Shoot cultures from nodal segments | 1.5 L liquid MS + 1 mg L−1 BAP (SIM). | The present work reports bioreactor based micropropagation and bacoside biosynthesis.443 shoots with 5.84 growth index in terms of dry wt. was recorded after 4-w. Bacoside production in shoot cultures of ALB system was ~1.75-fold higher. | [56] |
Axenic cultures→leaf and internode→TCL | MS + 10.0 µM BA (SIM). Liquid MS + 1% sucrose (SELM). MS + 5.0 µM IBA (RIM). | 59 adventitious shoot buds/leaf tTCL explant 33 adventitious shoot buds/internode tTCL explant on SIM. 100% of shoots rooted on RIM. Acclimatization in plastic pots containing potting mixture under mist chamber and finally transferred to green house. | [57] |
Shoot tips (≤5 mm) from in vitro shoot cultures | 2.5% Na- alginate in MS + 3% sucrose→100 mM CaCl2.2H2O (encapsulation). | 93% of encapsulated shoot tips showed regrowth with 10 shoots/explant after 6 months of storage at 4 °C. 100% of shoots showed rooting. Acclimatization in pot mixture of peat-moss and sand (1:1) with 93% survival rate in greenhouse. | [58] |
Stems (4–6 cm) with 4–5 nodes and leaves | MS + 0.25 mg L−1 BA (SIM). MS + 0.25–1.0 mg L−1 IBA (RIM). | Direct shoot induction within 8-10 d from leaf explants; 27 shoots/upper half of explant on SIM under W LED lighting system after 8-w. 100% of shoots rooted on RIM after 4-w. Acclimatization in aquarium with sand and tap water (pH ~8.0). | [59] |
Axenic shoot cultures→nodal explants | MS + 12.5 μM BA + 1 μM 2,4-D + 50 mM sucrose (SIM). MS + 12.5 μM BA + 1 μM 2,4-D + 250 mM sucrose (SEIM). ½ MS (SEGM). | 100% of leaf explants differentiated shoot buds on SIM within 30-d 100% of SEs formed complete plantlets on SEGM after 6-w. Stages of direct SE differentiation confirmed by SEM. 41% of encapsulated SEs stored at 25 °C produced complete plantlets within 20 d of culture on MS medium. | [60] |
Nodal segments from ex vitro plants | MS + 30% Sargassum wightii liquid extracts (SIM, RIM). | This study suggests that seaweed liquid extract can be used as substitute for PGR for in vitro propagation.25 shoots/explant formed with increased biomass after 3rd subculture. Acclimatization in autoclaved soil and vermiculate (1:1). | [61] |
Nodal explants | Liquid MS + 1 mg L−1 Kn (SIM, RIM). Subcultures 7-d. | 36–75 rooted shoots along with adventitious shoots were formed after 7-d in SIM. Acclimatization in sterilized garden soil in a shade house for one week. Aqueous extracts of acclimatized plants showed 10-fold higher antioxidant capacity than in vitro liquid cultured plantlets. | [62] |
Shoot tips (8–10 mm) of ex vitro plants | MS + 1.5 mg L−1 BA + 2.0 mM Spermidine (SIM, SELM). ½ MS (RIM). | 123 adventitious shoot buds/explant with 34.9 elongated shoots/explants were formed after 12-d. 13 roots/shoot formed on RIM within 18-d. Acclimatized with 96.7% survival rate in field. | [63] |
Shoot tips of ex vitro plants | MS + 60% G. salicornia extract (SIM, SMM). ½ MS + 0.1 mg L−1 IAA (RIM). pH 5. 75. 3% sucrose. 0.8% Agar–agar type-1, 0.2% CleriGel | 94% encapsulated shoot tip explants multiplied resulting 92 shoots/explant after 1-w. 85% explants showed multiple shoot induction with 145 shoots/encapsulated explants after 2-w. 84% shoots formed 54 roots/shoot within 1-win RIM. Acclimatization in sterile Soilrite (Keltech, Bengaluru, India): peat (1:1) in growth chamber with 100% survival rate in green house. RAPD analysis of in vitro regenerated plants and mother plants showed genetic similarity. | [64] |
Shoot tips of ex vitro plants | PGR free MS medium | Explants excised from different positions showed variable frequency of direct shoot organogenesis in unsupplemented MS medium with optimum of 8 shoot buds/leaf and 15/internode explant within 4-w. 100% of micro shoots (5–6 cm long) rooted within 2-w of culture. Acclimatized plants flowered within 3 m. | [65] |
Nodal explants | Liquid MS + 20 uM TDZ | 43 shoots per explant were obtained after 8-w of culture. Microshoots were rooted in growth regulator free media. Acclimatized with 97% survival ex vito. | [66] |
S. No | Compounds | Derivatives | Reference |
---|---|---|---|
Jujubogenin derivatives | |||
1 | Bacoside A1 | 3-O-[α-L-arabinofuranosyl(1→3)]-α-L-arabinopyranoside | [85] |
2 | Bacoside A3 | 3-O-α-L-arabinofuranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside | [86] |
3 | Bacopaside III | 3-O-α-L-arabinofuranosyl-(1→2)-β-D-glucopyranosyl | [87] |
4 | Bacopaside IX | 3-O-{β-D-glucopyranosyl(1→4)[α-L-arabinofuranosyl-(1→2)]-β-D-glucopyranosyl}-20-O-α-L-arabinofuranosyl | [88] |
5 | Bacopaside X | [α-L-arabinofuranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-α-L-arabinofuranosyl] | [89] |
6 | Bacopaside N1 | [β-D-glucopyranosyl-(1→3)]-β-D-glucopyranosyl] | |
7 | Bacopaside IV | 3-O-β-D-glucopyranosyl-(1→3)-α-L-arabinofuranosyl | [87] |
8 | Bacopasaponin A | 3,20-di-O-α-L-arabinopyranoside | [90,91] |
9 | Bacopasaponin E | 3-O-α-L-arabinofuranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-α-L-arabinopyranoside,20-O-α-L-arabinopyranoside | [92] |
10 | Bacopasaponin F | 3-O- α-L-arabinofuranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside,20-O-α-L-arabinopyranoside | |
11 | Bacopasaponin G | 3-O-[α-L-arabinofuranosyl-(1→2)]-α-L-arabinopyranoside | [79] |
Pseudojujupogenin derivatives | |||
1 | Bacoside A2 | 3-O-α-L-arabinofuranosyl-(1→5)-[α-L-arabinofuranosyl-(1→6)]-α-D-glucofuranoside | [93] |
2 | Bacopaside N2 | [β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl] | [89] |
3 | Bacopaside III | 3-O-[6-O-sulfonyl-β-D-glucopyranosyl-(1→3)]-α-L-arabinopyranoside | [79] |
4 | Bacopaside II | 3-O-α-L-arabinofuranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucofuranoside | [87,94] |
5 | Bacopaside I, Bacopaside V | 3-O-α-L-arabinofuranosyl-(1→2)-[6-O-sulfonyl-β-D-glucopyranosyl-(1→3)]-α-L-arabinopyranoside, 3-O-β-D-glucopyranosyl-(1→3)]-α-L-arabinofuranosyl | |
6 | Bacopasaponin B | 3-O-[α-L-arabinofuranosyl-(1→2)]-α-L-arabinopyranoside | [90,91] |
7 | Bacopasaponin D | 3-O-[α-L-arabinofuranosyl-(1→2)]-β-D-glucopyranoside | |
8 | Bacopasaponin C | 3-O-[α-L-arabinofuranosyl-(1→2)]-β-D-glucopyranosyl-(1→3)]-α-L-arabinopyranoside | |
9 | Bacopasaponin H | 3-O-[α-L-arabinofuranosyl] | [95] |
10 | Bacopaside XI | 3-O-[β-D-arabinofuranosyl-(1→3)]-6-O-sulfonyl-β-D-glucopyranosyl | [96] |
11 | Bacopaside XII | 3-O-{β-D-glucopyranosyl(1→3)[β-D-arabinofuranosyl(1→2)]-β-D-glucopyranosyl}-20-O-β-D-arabinopyranosyl |
Compounds/Extracts | Pharmacological Activity | Experimental Model | Dosage/Concentration/Period of Administration | References |
---|---|---|---|---|
B. monnieri methanol extract of the whole plant; bacoside E; bacopaside VII | Anti-tumor | Human tumor cell lines MDA-MB-231, SHG-44, HCT-8, A-549 and PC-3M | 50 μmol/kg for 7days | [97] |
B. monnieri ethanol extract | Apoptopic/cytotoxic | In mouse S-180 cells | 550 μg/mL for 48 h | [98] |
Improving learning & memory | Serotonergic system of postnatal rats | 40 mg/kg for 15 days | [99] | |
Anti- Alzheimer’s | Adult male rats | 100 mg/kg for 15 days | [100] | |
Standardized B. monnieri extract | Memory enhancer | Human | 125 mg of SBME or placebo twice a day for 16 weeks | [101] |
B. monnieri methanol extract | Anti-inflammatory | Carrageenan-induced rat paw edema | 100 mg/kg for 5 h | [102] |
Bacoside A | Anti- apoptosis | Adult male albino rats of Wistar strain | 10 mg/kg/day for 12 weeks | [103] |
Hepatoprotective | Rats induced with N- nitrosodiethylamine | 15 mg/kg/day for 14 days | [104] | |
Neuroprotective | Rat brain exposed to cigarette smoke | 10 mg/kg/day for 12 weeks | [105] | |
Anti-oxidant | Rat brain exposed to cigarette smoke | 10 mg/kg/day for 12 weeks | [106] | |
Anti-epileptic | Pilocarpine-induced epileptic rats | 150 mg/kg/day for 15 days | [18] | |
B. monnieri n- butanol extract | Acquisition and expression of morphine tolerance | Mice | 15 mg/kg for 7 days | [107] |
B. monnieri alcohol extract | Cognitive function enhancer and neuroprotective | Male Wister rats induced by ethylcholine aziridinium ion (AF64A) | 40 mg/kg for two weeks | [108] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, P.S.; Sarkar, S.; Jeyasri, R.; Muthuramalingam, P.; Ramesh, M.; Jha, S. In Vitro Propagation, Phytochemical and Neuropharmacological Profiles of Bacopa monnieri (L.) Wettst.: A Review. Plants 2020, 9, 411. https://doi.org/10.3390/plants9040411
Saha PS, Sarkar S, Jeyasri R, Muthuramalingam P, Ramesh M, Jha S. In Vitro Propagation, Phytochemical and Neuropharmacological Profiles of Bacopa monnieri (L.) Wettst.: A Review. Plants. 2020; 9(4):411. https://doi.org/10.3390/plants9040411
Chicago/Turabian StyleSaha, Partha Sarathi, Sayantika Sarkar, Rajendran Jeyasri, Pandiyan Muthuramalingam, Manikandan Ramesh, and Sumita Jha. 2020. "In Vitro Propagation, Phytochemical and Neuropharmacological Profiles of Bacopa monnieri (L.) Wettst.: A Review" Plants 9, no. 4: 411. https://doi.org/10.3390/plants9040411
APA StyleSaha, P. S., Sarkar, S., Jeyasri, R., Muthuramalingam, P., Ramesh, M., & Jha, S. (2020). In Vitro Propagation, Phytochemical and Neuropharmacological Profiles of Bacopa monnieri (L.) Wettst.: A Review. Plants, 9(4), 411. https://doi.org/10.3390/plants9040411