In Vitro Antifungal Activity of Peltophorum dubium (Spreng.) Taub. extracts against Aspergillus flavus
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Collection and Identification
4.2. Extraction of P. dubium
4.3. Microorganism, Media, and Solutions
4.3.1. Microorganism
4.3.2. Media
4.3.3. Solutions
4.4. In Vitro Antifungal Activity of Methanolic Extract
4.4.1. Microdilution Method: Minimum Inhibitory Concentration (MIC)
4.4.2. Contact Bioautography
4.4.3. Evans Blue Staining: Visualization of Hyphal Alterations
4.4.4. Hyphal Radial Growth Test
4.5. Statistical Analysis
4.6. Characterization of P. dubium Extracts
4.6.1. Isolation of Bioactive Fractions
4.6.2. Thin Layer Chromatography (TLC) Analysis
4.6.3. High Performance Liquid Chromatography Diode Array Ultraviolet/Visible (HPLC UV/VIS DAD) Analysis
4.6.4. Ultra-High Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry (UPLC ESI-MS) analysis
4.6.5. Compounds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Santin, E. Crecimiento de los hongos y producción de micotoxinas. In Mould Growth and Mycotoxin Production, The Mycotoxin Blue Book; Capitulo 9; Nottingham University Press: Nottingham, UK, 2005; pp. 225–234. [Google Scholar]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitt, J.I.; Miller, J.D. A concise history of mycotoxin research. J. Agric. Food Chem. 2017, 65, 7021–7033. [Google Scholar] [CrossRef] [PubMed]
- de Toro, J.C. Desarrollo de un nuevo modelo de Aspergilosis Pulmonar en rata consideraciones previas, estudio comparativo y aplicaciones al diagnóstico de la enfermedad. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Espana, 2005. [Google Scholar]
- Magan, N.; Hope, R.; Cairns, V.; Aldred, D. Post-harvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain. Epidemiol. Mycotoxin Prod. Fungi 2003, 109, 723–730. [Google Scholar]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aesan—Agencia Española de Seguridad Alimentaria y Nutrición. Available online: http://www.aecosan.msssi.gob.es/AECOSAN/web/home/aecosan_inicio.htm (accessed on 21 January 2020).
- Carrillo, L. Los Hongos de Los Alimentos y Los Forrajes; Universidad Nacional de Salta: Salta, Argentina, 2003; Volume 118, ISBN 987-9381-19-X. [Google Scholar]
- Alvarenga Arrúa, A.A.; Méndez, J.M.; Ríos Fernández, D. Aflatoxinas, un Riesgo Real, Aflatoxins, a Real Risk. Rep. Cient. FaCEN 2013, 4, 68–81. [Google Scholar]
- Villada, J.M.; Miriam, N. Peltophorum Dubium, una Alternativa de Producción Forestal en los Bosques Húmedos de Salta y Jujuy; Concordia: Entre Ríos, Argentina, 2015. [Google Scholar]
- Guerra, M.P.; Nodari, R.O.; Reis, A.; Grando, J.L. Comportamento da canafístula (Peltophorum dubium (Sprengel) Taubert) em viveiro, submetida a diferentes métodos de quebra de dormência e semeadura. Bol. Pesqui. Florest. 1982, 5, 1–18. [Google Scholar]
- Basualdo, I.; Soria, N. Farmacopea herbolaria paraguaya: Especies de la medicina folklórica utilizadas para combatir enfermedades del aparato respiratorio (Parte i). Rojasiana 1996, 3, 197–238. [Google Scholar]
- Hurrell, J.A.; Ulibarri, E.A.; Puentes, J.P.; Costantino, F.B.; Arenas, P.M.; Pochettino, M.L. Leguminosas medicinales y alimenticias utilizadas en la conurbación Buenos Aires-La Plata, Argentina. Bol. Latinoam. Caribe Plantas Med. Aromáticas 2011, 10, 443–455. [Google Scholar]
- Crovetto, R.N.M. Estudios etnobotánicos V. Nombres de plantas y su utilidad según los MBYA guaraní de Misiones, Argentina. Bonplandia 2012, 21, 109–133. [Google Scholar] [CrossRef] [Green Version]
- Salvat, A.; Antonacci, L.; Fortunato, R.H.; Suárez, E.Y.; Godoy, H.M. Antimicrobial activity in methanolic extracts of several plant species from northern Argentina. Phytomedicine 2004, 11, 230–234. [Google Scholar] [CrossRef]
- Macedo, M.L.R.; das Freire, M.G.M.; Cabrini, E.C.; Toyama, M.H.; Novello, J.C.; Marangoni, S. A trypsin inhibitor from Peltophorum dubium seeds active against pest proteases and its effect on the survival of Anagasta kuehniella (Lepidoptera: Pyralidae). Biochim. Biophys. Acta BBA Gen. Subj. 2003, 1621, 170–182. [Google Scholar] [CrossRef]
- Troncoso, M.F.; Biron, V.A.; Longhi, S.A.; Retegui, L.A.; Wolfenstein-Todel, C. Peltophorum dubium and soybean Kunitz-type trypsin inhibitors induce human Jurkat cell apoptosis. Int. Immunopharmacol. 2007, 7, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Bahia, M.V.; David, J.M.; Rezende, L.C.; Guedes, M.L.; David, J.P. A C-glucoside benzoic acid derivative from the leaves of Peltophorum dubium. Phytochem. Lett. 2010, 3, 168–170. [Google Scholar] [CrossRef] [Green Version]
- Duraipandiyan, V.; Ayyanar, M.; Ignacimuthu, S. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complement. Altern. Med. 2006, 6, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, S.K.; Ng, T.B. First report of an antifungal amidase from Peltophorum ptercoarpum. Biomed. Chromatogr. 2010, 24, 458–464. [Google Scholar] [CrossRef]
- Khan, M.; Rizwani, G.H.; Shareef, H.; Ćavar, S.; Zia-Ul-Haq, M. Assessment of total phenolic content and antioxidant potential of methanol extract of Peltophorum pterocarpum (DC.) Backer ex K. Heyne. Pak. J. Pharm. Sci. 2013, 26, 967–972. [Google Scholar]
- Li, Y.-C.; Kuo, P.-C.; Yang, M.-L.; Chen, T.-Y.; Hwang, T.-L.; Chiang, C.-C.; Thang, T.D.; Tuan, N.N.; Tzen, J.T. Chemical Constituents of the Leaves of Peltophorum pterocarpum and Their Bioactivity. Molecules 2019, 24, 240. [Google Scholar] [CrossRef] [Green Version]
- Parveen, M.; Ghalib, R.M.; Khanam, Z.; Mehdi, S.H.; Ali, M. A novel antimicrobial agent from the leaves of Peltophorum vogelianum (Benth.). Nat. Prod. Res. 2010, 24, 1268–1273. [Google Scholar] [CrossRef]
- Di Ciaccio, L.S. Prospección de Actividad Biológica en Representantes de la Flora del Norte Argentino con Potencial Terapéutico. Ph.D. Thesis, Facultad de Farmacia y Bioquímica, CABA, Universidad de Buenos Aires, Buenos Aires, Argentina, 2017. Unpublished work. [Google Scholar]
- Van Egmond, H.P.; Jonker, M.A. Reglamentos a Nivel Mundial Para las Micotoxinas en Los Alimentos y en Las Raciones en el Año 2003; FAO: Rome, Italy, 2004. [Google Scholar]
- Perfect, J.R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov. 2017, 16, 603–616. [Google Scholar] [CrossRef] [Green Version]
- Morozumi, S. Isolation, purification, and antibiotic activity of o-methoxycinnamaldehyde from cinnamon. Appl. Environ. Microbiol. 1978, 36, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Paster, N.; Juven, B.J.; Shaaya, E.; Menasherov, M.; Nitzan, R.; Weisslowicz, H.; Ravid, U. Inhibitory effect of oregano and thyme essential oils on moulds and foodborne bacteria. Lett. Appl. Microbiol. 1990, 11, 33–37. [Google Scholar] [CrossRef]
- Paster, N.; Menasherov, M.; Ravid, U.; Juven, B. Antifungal Activity of Oregano and Thyme Essential Oils Applied as Fumigants Against Fungi Attacking Stored Grain. J. Food Prot. 1995, 58, 81–85. [Google Scholar] [CrossRef]
- Rasooli, I.; Abyaneh, M.R. Inhibitory effects of Thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Control 2004, 15, 479–483. [Google Scholar] [CrossRef]
- García-Camarillo, E.A.; Quezada-Viay, M.Y.; Moreno-Lara, J.; Sánchez-Hernández, G.; Moreno-Martínez, E.; Pérez-Reyes, M.C.J. Actividad Antifúngica de Aceites Esenciales de Canela (Cinnamomum zeylanicum Blume) y Orégano (Origanum vulgare L.) y su Efecto sobre la Producción de Aflatoxinas en Nuez Pecanera [Carya illinoensis (F.A. Wangenh) K. Koch]. Rev. Mex. Fitopatol. 2006, 24, 8–12. [Google Scholar]
- Dabur, R.; Diwedi, S.K.; Yadav, V.; Mishra, V.; Singh, R.; Singh, H.; Sharma, G.L. Efficacy of 2-(3,4-Dimethyl-2,5-Dihydro-1H-Pyrrole-2-yl)-1-Methylethyl Pentanoate in a Murine Model of Invasive Aspergillosis. Antimicrob. Agents Chemother. 2005, 49, 4365–4367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Cruz Cabral, L.; Fernández Pinto, V.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1–14. [Google Scholar] [CrossRef]
- Garcia, D.; Ramos, A.J.; Sanchis, V.; Marín, S. Equisetum arvense hydro-alcoholic extract: Phenolic composition and antifungal and antimycotoxigenic effect against Aspergillus flavus and Fusarium verticillioides in stored maize. J. Sci. Food Agric. 2013, 93, 2248–2253. [Google Scholar] [CrossRef]
- Tabassum, S.; Ahmed, M.; Mirza, B.; Naeem, M.; Zia, M.; Shanwari, Z.; Khan, G.M. Appraisal of phytochemical and in vitro biological attributes of an unexplored folklore: Rhus Punjabensis Stewart. BMC Complement. Altern. Med. 2017, 17, 146. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, G.E. Flavonoides: Actualización de su Uso en Terapéutica. Acta Far. Bonaer. 1983, 2, 97–103. [Google Scholar]
- Galeotti, F.; Barile, E.; Curir, P.; Dolci, M.; Lanzotti, V. Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem. Lett. 2008, 1, 44–48. [Google Scholar] [CrossRef]
- Gauthier, L.; Atanasova-Penichon, V.; Chéreau, S.; Richard-Forget, F. Metabolomics to Decipher the Chemical Defense of Cereals against Fusarium graminearum and Deoxynivalenol Accumulation. Int. J. Mol. Sci. 2015, 16, 24839–24872. [Google Scholar] [CrossRef] [PubMed]
- Bilska, K.; Jurczak, S.; Kulik, T.; Ropelewska, E.; Olszewski, J.; Żelechowski, M.; Zapotoczny, P. Species Composition and Trichothecene Genotype Profiling of Fusarium Field Isolates Recovered from Wheat in Poland. Toxins 2018, 10, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, S.R. Flavonoides Con Actividad Antitumoral: Identificación y Estudio del Mecanismo de Acción. Ph.D. Thesis, Universidad de Las Palmas de Gran Canaria, Las Palmas, Espana, 2009. [Google Scholar]
- Nostro, A.; Germanò, M.P.; D’Angelo, V.; Marino, A.; Cannatelli, M.A. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett. Appl. Microbiol. 2000, 30, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Shuping, D.S.S.; Eloff, J.N. The use of plants to protect plants and food against fungal pathogens: A review. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perfect, J.R. Is there an emerging need for new antifungals? Expert Opin. Emerg. Drugs 2016, 21, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Salvat, A.E. Actividad Antifúngica de Extractos de Plantas Autóctonas sobre Aspergillus Parasiticus y Fusarium Graminearum. Master’s Thesis, Universidad de San Martin, Prov. de Buenos Aires, Argentina, 2010. Unpublished work. [Google Scholar]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Springer: New York, NY, USA, 2009; Volume 519. [Google Scholar]
- Rex, J.H. Clinical Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi: Approved Standard; NCCLS: Wayne, PA, USA, 2002. [Google Scholar]
- Espinel-Ingroff, A.; Rodríguez-Tudela, J.L.; Martínez-Suárez, J.V. Comparison of two alternative microdilution procedures with the National Committee for Clinical Laboratory Standards reference macrodilution method M27-P for in vitro testing of fluconazole-resistant and -susceptible isolates of Candida albicans. J. Clin. Microbiol. 1995, 33, 3154–3158. [Google Scholar] [CrossRef] [Green Version]
- Salvat, A.; Antonnacci, L.; Fortunato, R.H.; Suárez, E.Y.; Godoy, H.M. Screening of some plants from Northern Argentina for their antimicrobial activity. Lett. Appl. Microbiol. 2001, 32, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Derita, M.G.; Leiva, M.L.; Zacchino, S.A. Influence of plant part, season of collection and content of the main active constituent, on the antifungal properties of Polygonum acuminatum Kunth. J. Ethnopharmacol. 2009, 124, 377–383. [Google Scholar] [CrossRef]
- Moreno López, J.P. Actividad Antifúngica de Los Extractos Vegetales de Piper Eriopodon y Zanthoxylum Monophyllum y sus Metabólicos Secundarios Mayoritarios Sobre dos Hongos Fitopatógenos de Clavel (Dianthus Caryophyllus). Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2011. [Google Scholar]
- Zacchino, A.S.; Gupta, M.P. Manual de Técnicas in Vitro Para la Detección de Compuestos Antifúngicos; Corpus Editorial: Rosario, Argentina; Santa Fe, Mexico, 2007; Volume 85. [Google Scholar]
- Semighini, C.P.; Harris, S.D. Methods to detect apoptotic-like cell death in filamentous fungi. In Molecular and Cell Biology Methods for Fungi; Springer: New York, NY, USA, 2010; pp. 269–279. [Google Scholar]
- Savi, G.D.; Vitorino, V.; Bortoluzzi, A.J.; Scussel, V.M. Effect of zinc compounds on Fusarium verticillioides growth, hyphae alterations, conidia, and fumonisin production. J. Sci. Food Agric. 2013, 93, 3395–3402. [Google Scholar] [CrossRef]
- Mier, T.; Toriello, C.; Ulloa, M. Hongos Microscópicos Saprobios y Parásitos; Universidad Autónoma Metropolitana-Xochimilco, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana: Mexico City, Mexico, 2002. [Google Scholar]
- Quiroga, E.N.; Sampietro, D.A.; Sgariglia, M.A.; Soberón, J.R.; Vattuone, M.A. Antimycotic activity of 5′-prenylisoflavanones of the plant Geoffroea decorticans, against Aspergillus species. Int. J. Food Microbiol. 2009, 132, 42–46. [Google Scholar] [CrossRef]
- Franco, L.A.; Matiz, G.E.; Calle, J.; Pinzón, R.; Ospina, L.F. Actividad antinflamatoria de extractos y fracciones obtenidas de cálices de Physalis peruviana L. Biomédica 2007, 27, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, H.; Bladt, S. Plant Drug Analysis: A Thin Layer Chromatography Atlas; Springer: Berlin/Heidelberg, Germany, 1996; ISBN 978-3-642-00574-9. [Google Scholar]
- da Graça Campos, M.; Markham, K.R. Structure Information from HPLC and on-Line Measured Absorption Spectra: Flavones, Flavonols and Phenolic Acids; Imprensa da Universidade de Coimbra/Coimbra University Press: Coimbra, Portugal, 2007. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Ciaccio, L.S.; Catalano, A.V.; López, P.G.; Rojas, D.; Cristos, D.; Fortunato, R.H.; Salvat, A.E. In Vitro Antifungal Activity of Peltophorum dubium (Spreng.) Taub. extracts against Aspergillus flavus. Plants 2020, 9, 438. https://doi.org/10.3390/plants9040438
Di Ciaccio LS, Catalano AV, López PG, Rojas D, Cristos D, Fortunato RH, Salvat AE. In Vitro Antifungal Activity of Peltophorum dubium (Spreng.) Taub. extracts against Aspergillus flavus. Plants. 2020; 9(4):438. https://doi.org/10.3390/plants9040438
Chicago/Turabian StyleDi Ciaccio, Lucía S., Alejandra V. Catalano, Paula G. López, Dante Rojas, Diego Cristos, Renée H. Fortunato, and Adriana E. Salvat. 2020. "In Vitro Antifungal Activity of Peltophorum dubium (Spreng.) Taub. extracts against Aspergillus flavus" Plants 9, no. 4: 438. https://doi.org/10.3390/plants9040438
APA StyleDi Ciaccio, L. S., Catalano, A. V., López, P. G., Rojas, D., Cristos, D., Fortunato, R. H., & Salvat, A. E. (2020). In Vitro Antifungal Activity of Peltophorum dubium (Spreng.) Taub. extracts against Aspergillus flavus. Plants, 9(4), 438. https://doi.org/10.3390/plants9040438