Yield, Growth, Quality, Biochemical Characteristics and Elemental Composition of Plant Parts of Celery Leafy, Stalk and Root Types Grown in the Northern Hemisphere
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield, Morphobiological Parameters, Dry Matter, Total Dissolved Solids and Nitrate Content
2.2. Antioxidants and Photosynthetic Pigments
2.3. Content of K, Zn, Mn, Fe, Cu and Se in Plant Parts
3. Material and Methods
3.1. Growing Conditions and Experimental Protocol
3.2. Sample Preparation
3.3. Dry Matter
3.4. Ascorbic Acid
3.5. Preparation of Ethanolic Extracts
3.6. Polyphenols
3.7. Antioxidant Activity (AOA)
3.8. Flavonoids
3.9. Total Dissolved Solids (TDS)
3.10. Nitrates
3.11. Selenium
3.12. Elemental Composition
3.13. Photosynthetic Pigments
3.14. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salehi, B.; Venditti, A.; Frezza, C.; Yücetepe, A.; Altuntaş, Ü.; Uluata, S.; Butnariu, M.; Sarac, I.; Shaheen, S.; Petropoulos, S.A.; et al. Apium plants: Beyond simple food and phytopharmacological applications. Appl. Sci. 2019, 9, 3547. [Google Scholar] [CrossRef] [Green Version]
- Sorour, M.A.; Hassanen, N.H.M.; Ahmed, M.H.M. Natural antioxidant changes in fresh and dried celery (Apium graveolens). Am. J. Energy Eng. 2015, 3, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Sellami, I.H.; Bettaieb, I.; Bourgou, S.; Dahmani, R.; Limam, F.; Marzouk, B. Essential oil and aroma composition of leaves, stalks and roots of celery (Apium graveolens var. dulce) from Tunisia. J. Essent. Oil Res. 2012, 24, 513–521. [Google Scholar] [CrossRef]
- Atta, A.H.; Alkofahi, A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J. Ethnopharmacol. 1998, 60, 117–124. [Google Scholar] [CrossRef]
- Khare, C.P. Indian Medicinal Plants; Springer: New York, NY, USA, 2007. [Google Scholar]
- Sowbhagya, H.B.; Srinivas, P.; Krishnamurthy, N. Effect of enzymes on extraction of volatiles from celery seeds. Food Chem. 2010, 120, 230–234. [Google Scholar] [CrossRef]
- Nadkarni, A.K. Indian Materia Medica; Popular Prakashan: New Delhi, India, 2019. [Google Scholar]
- Karnick, C.R. Pharmacopoeial Standards of Herbal Plants; Sri Satguru Publications: New Delhi, India, 1994. [Google Scholar]
- Mencherini, T.; Cau, A.; Bianco, G.; Della Loggia, R.; Aquino, R.P.; Autore, G. An extract of Apium graveolens var. dulce leaves: Structure of the major constituent, apiin, and its anti-inflammatory properties. J. Pharm. Pharmacol. 2007, 59, 891–897. [Google Scholar] [CrossRef]
- Sung, B.; Chung, H.Y.; Kim, N.D. Role of Apigenin in Cancer Prevention via the Induction of Apoptosis and Autophagy. J. Cancer Prev. 2016, 21, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants, 2nd ed.; Bishen Singh Mahendra Pal Singh: Dehra Dun, India, 1980. [Google Scholar]
- Kooti, W.; Mansouri, E.; Ghasemiboroon, M.; Harizi, M.; Ashtary-Larky, D.; Afrisham, R. The effects of hydroalcoholic extract of Apium graveolens leaf on the number of sexual cells and testicular structure in rat. Jundishapur J. Nat. Pharm. Prod. 2014, 9, e7532. [Google Scholar] [CrossRef] [Green Version]
- Marzouni, H.Z.; Daraei, N.; Sharafi-Ahvazi, N.; Kalani, N.; Kooti, W. The effects of aqueous extract of celery leaves (Apium graveolens) on fertility in female rats. World J. Pharm. Pharm. Sci. 2016, 5, 1710–1714. [Google Scholar] [CrossRef]
- Kooti, W.; Mansouri, E.; Ghasemiboroon, M.; Harizi, M.; Amirzargar, A. Protective effects of celery (Apium graveolens) on testis and cauda epididymal spermatozoa in rat. Iran. J. Reprod. Med. 2014, 12, 365–366. [Google Scholar] [PubMed]
- Kooti, W.; Daraei, N. A Review of the antioxidant activity of celery (Apium graveolens L). J. Evid.-Based Complement. Altern. Med. 2017, 22, 1029–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lans, C.A. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J. Ethnobiol. Ethnomed. 2006, 2, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, S.K. Celery. Chapter 18. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing: Cambridge, UK, 2006; pp. 317–336. [Google Scholar]
- Santamaria, P. Nitrate in vegetables: Toxicity content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Chung, M.J.; Lee, S.H.; Sung, N.J. Inhibitory effect of whole strawberries, garlic juice or kale juice on endogenous formation of N-nitrosodimethylamine in humans. Cancer Lett. 2002, 182, 1–10. [Google Scholar] [CrossRef]
- Juchaux-Cachau, M.; Landouar-Arsivaud, L.; Pichaut, J.P.; Campion, C.; Porcheron, B.; Jeauffre, J.; Noiraud-Romy, N.; Simoneau, P.; Maurousset, L.; Lemoine, R. Characterization of AgMaT2, a plasma membrane mannitol transporter from celery, expressed in phloem cells, including phloem parenchyma cells. Plant Physiol. 2007, 145, 62–74. [Google Scholar] [CrossRef] [Green Version]
- Gallie, D.R. L-ascorbic acid: A multifunctional molecule supporting plant growth and development. Scientifica 2013, 2013, 795964. [Google Scholar] [CrossRef] [Green Version]
- Matić, D. The function and metabolism of ascorbic acid in plants. Bachelor’s thesis, University of Zagreb, Zagreb, Croatia, 2014. [Google Scholar]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Knez Hrnčič, M.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol.Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.R. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems Oxidative Med. Cell. Longev. 2018, 2018, 9156285. [Google Scholar] [CrossRef] [Green Version]
- Pilon-Smits, E.A.H. On the ecology of selenium accumulation in plants. Plants 2019, 8, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalembasa, S.; Malinowska, E.; Kalembasa, D.; Symanowicz, B.; Pakuła, K. Effect of foliar fertilization with tytanit on the content of selected macroelements and sodium in celery. J. Elem. 2014, 19, 683–696. [Google Scholar] [CrossRef]
- Madrid, R.; Lopez, M.D.; Barba, E.M.; Gómez, P.; Artés, F. Influence of nitrate fertilizer on macronutrient contents of celery plants on soil-less culture. J. Plant Nutr. 2007, 31, 55–67. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Li, J.; Ao, Y. Effect of phosphorus on celery growth and nutrient uptake under different calcium and magnesium levels in substrate culture. Hortic. Sci. 2010, 37, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC press: New York, NY, USA, 2010. [Google Scholar]
- Tsonev, T.; Lidon, F.J.C. Zinc in plants—an overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Golubkina, N.A.; Seredin, T.M.; Antoshkina, M.S.; Kosheleva, O.V.; Teliban, G.C.; Caruso, G. Yield, quality, antioxidants and elemental composition of new leek cultivars under organic or conventional systems in a greenhouse. Horticulturae 2018, 4, 39. Available online: http://www.fupress.net/index.php/ahs/ (accessed on 21 March 2020). [CrossRef] [Green Version]
- Golubkina, N.A.; Kekina, H.G.; Molchanova, A.V.; Antoshkina, M.S.; Nadezhkin, S.M.; Soldatenko, A.V. Antioxidants of Plants and Methods of their determination. VNIISSOK: Moscow, Russia, 2018. [Google Scholar]
- Golubkina, N.A.; Kosheleva, O.V.; Krivenkov, L.V.; Nadezhkin, S.M.; Dobrutskaya, H.G.; Caruso, G. Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (Spinacia oleracea L.) as affected by selenium form. Sci. Hortic. 2017, 225, 350–358. [Google Scholar] [CrossRef]
- Maximova, T.V.; Nikulina, I.N.; Pakhomov, V.P.; Shkarina, H.I.; Chumakova, Z.V.; Arzamastsev, A.P. Method of Antioxidant Activity Determination. RU Patent 2,170,930, 5 May 2000. [Google Scholar]
- Da Silva, L.A.L.; Pezzini, B.R.; Soares, L. Spectrophotometric determination of the total flavonoid content in Ocimum basilicum L. (Lamiaceae) leaves. Pharmacogn. Mag. 2015, 11, 96–101. [Google Scholar] [CrossRef]
- Golubkina, N.; Amagova, Z.; Matsadze, V.; Zamana, S.; Tallarita, A.; Caruso, G. Effects of arbuscular mycorrhizal fungi on yield, biochemical characteristics and elemental composition of garlic and onion under selenium supply. Plants 2020, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Alfthan, G.V. A micromethod for the determination of selenium in tissues and biological fluids by single-test-tube fluorimetry. Anal. Chim. Acta 1984, 165, 187–194. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
Celery Type | ||||||
---|---|---|---|---|---|---|
Parameter | Leafy | Stalk | Root | |||
Elixir | Samurai | Atlant | Primus | Egor | Dobrynya | |
Plant total biomass (g) | 1202 ± 84a | 932 ± 72b | 1001 ± 65b | 953 ± 68b | 707 ± 68c | 930 ± 93b |
*Yield (t·ha-1) | 40.0 ± 3.9a | 38.0 ± 2.7a | 33.0 ± 2.0b | 31.9 ± 1.5b | 30.5 ± 0.9b | 38.1 ± 0.8a |
Mean root weight (g) | 215 ± 21c | 167 ± 17c | 196 ± 20c | 190 ± 23c | 510 ± 51b | 644 ± 64a |
No. of leaves per plant | 154 ± 11a | 84 ± 7b | 42 ± 4c | 40 ± 3c | 11 ± 4d | 14 ± 6d |
Leaf area (cm2) | 377.9 ± 26a | 284.1 ± 22b | 192.9 ± 16c | 188 ± 18c | 272.1 ± 23b | 366.6 ± 27a |
Celery Type | |||||||
---|---|---|---|---|---|---|---|
Parameter | Plant Part | Leafy | Stalk | Root | |||
Elixir | Samurai | Atlant | Primus | Egor | Dobrynya | ||
Dry matter (g·100 g-1 f.w.) | Leaves | 20.6 ± 1.6aA | 21.3 ± 1.6aA | 21.0 ± 1.6aA | 20.6 ± 1.4aA | 21.2 ± 1.5aA | 17.5 ± 1.3bA |
Petioles | 15.5 ± 1.2aB | 15.8 ± 1.3aB | 15.0 ± 1.0aB | 14.7 ± 1.1aB | 15.8 ± 1.3aB | 12.3 ± 0.9bB | |
Roots | - | - | - | 22.2 ± 1.1aA | 17.9 ± 1.0bA | ||
TDS | Leaves | 19.9 ± 1.2bA | 25.1 ± 1.7aA | 26.6 ± 1.7aA | 24.5 ± 1.3aA | 8.2 ± 0.7dB | 13.7 ± 1.0cA |
(mg·kg-1 d.w.) | Petioles | 10.0 ± 0.8cB | 12.8 ± 0.9bB | 13.0 ± 1.0bB | 11.9 ± 1.0bcB | 6.9 ± 0.6cB | 15.4 ± 1.1aA |
Roots | - | - | - | 14.0 ± 1.0aA | 14.6 ± 1.1aA | ||
Monosaccharides | Leaves | 3.9 ± 0.3bB | 4.7 ± 0.4aB | 4.7 ± 0.4aB | 5.2 ± 0.4aB | 4.4 ± 0.4abB | 3.2 ± 0.3cB |
(g·100 g-1 d.w.) | Petioles | 7.5 ± 0.6bA | 7.6 ± 0.6bA | 9.7 ± 0.8aA | 8.2 ± 0.7abA | 7.1 ± 0.6bcA | 6.3 ± 0.5cA |
Roots | - | - | - | 7.5 ± 0.7aA | 6.3 ± 0.6aA | ||
Disaccharides | Leaves | 2.3 ± 0.2aB | 1.2 ± 0.1bB | 0.7 ± 0.1cB | 1.0 ± 0.2bA | 1.2 ± 0.1bB | 2.4 ± 0.1aC |
(g·100 g-1 d.w.) | Petioles | 2.9 ± 0.2bA | 3.4 ± 0.3bA | 1.5 ± 0.1cA | 1.3 ± 0.2cA | 0.3 ± 0.05dC | 5.0 ± 0.4aB |
Roots | 9.5 ± 0.8bA | 16.6 ± 1.1aA | |||||
Nitrates | Leaves | 1050 ± 97cA | 1300 ± 105bA | 1400 ± 115bA | 1290 ± 92bA | 728 ± 62dA | 4109 ± 310aA |
(mg·kg-1 d.w.) | Petioles | 490 ± 36cB | 650 ± 54bB | 650 ± 52bB | 704 ± 63bB | 495 ± 35cB | 4702 ± 342aA |
Roots | - | - | - | 840 ± 71bA | 1566 ± 123aB |
Celery Type | |||||||
---|---|---|---|---|---|---|---|
Parameter | Plant Part | Leafy | Stalk | Root | |||
Elixir | Samurai | Atlant | Primus | Egor | Dobrynya | ||
Ascorbic acid (mg·100 g-1 f.w.) | Leaves | 290 ± 25aA | 229 ± 20bcA | 254 ± 20abA | 235 ± 16bcA | 260 ± 20abA | 216 ± 15cA |
Petioles | 45.4 ± 1.6aB | 47.7 ± 1.6aB | 47.8 ± 1.0aB | 46.0 ± 1.2aB | 30.7 ± 2.5bB | 28.1 ± 2.0bB | |
Roots | - | - | - | 30.9±2.7aB | 33.3±2.8aB | ||
Polyphenols (mg GAE.g-1 d.w.) | Leaves | 17.2 ± 1.1aA | 15.5 ± 1.0aA | 16.0 ± 1.1aA | 17.2 ± 1.0aA | 15 ± 1.0abA | 13.3 ± 0.9bA |
Petioles | 10.0 ± 0.4aB | 10.0 ± 0.4aB | 8.6 ± 0.3bcB | 9.0 ± 0.4bB | 8.3 ± 0.3bcC | 7.9 ± 0.3cC | |
Roots | - | - | - | 10.8 ± 0.4aB | 10.8 ± 0.4aB | ||
Flavonoids (mg-eq | Leaves | 6.6 ± 0.2aA | 4.8 ± 0.1bA | 4.1 ± 0.1cA | 3.8 ± 0.2cA | 2.9 ± 0.1dA | 3.7 ± 0.2cA |
Q.g-1 d.w.) | Petioles | 2.3 ± 0.1bB | 3.0 ± 0.2aB | 1.7 ± 0.1cB | 1.5 ± 0.2cB | 1.7 ± 0.1cB | 2.4 ± 0.1bB |
Roots | - | - | - | 1.2 ± 0.2aC | 0.9 ± 0.1aC | ||
AOA (mg GAE.g-1 d.w.) | Leaves | 19.8 ± 1.3cA | 28.4 ± 2.1bA | 28.7 ± 2.1bA | 28.0 ± 1.8bA | 29.7 ± 2.2abA | 33.6 ± 2.3aA |
Petioles | 15.4 ± 1.0aB | 12.3 ± 0.7bB | 14.4 ± 0.9aB | 14.0 ± 0.7aB | 10.9 ± 0.4cC | 11.9 ± 0.5bcC | |
Roots | - | - | - | 16.1 ± 1.1aB | 16.3 ± 1.1aB |
DM | NO3 | TDS | AA | Fl | AOA | PP | MS | DS | Ash | K | Mn | Fe | Cu | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NO3 | −0.334 | 1 | |||||||||||||
TDS | 0.422 | 0.053 | 1 | ||||||||||||
AA | 0.918* | 0.005 | 0.428 | 1 | |||||||||||
Fl | 0.701** | 0.0393 | 0.608*** | 0.804 | 1 | ||||||||||
AOA | 0.756** | 0.202 | 0.342 | 0.844* | 0.484 | 1 | |||||||||
PP | 0.943* | −0.106 | 0.542 | 0.978* | 0.861* | 0.781** | 1 | ||||||||
MS | −0.676*** | −0.381 | −0.303 | −0.848* | −0.718** | −0.791** | −0.801** | 1 | |||||||
DS | −0.606*** | 0.404 | 0.018 | −0.451 | -0.092 | −0.524 | −0.408 | 0.251 | 1 | ||||||
Ash | 0.391 | 0.584 | 0.380 | 0.554 | 0.260 | 0.782** | 0.461 | −0.631*** | −0.292 | 1 | |||||
K | −0.163 | −0.397 | 0.313 | −0.276 | 0.095 | −0.322 | −0.121 | 0.448 | 0.244 | −0.500 | 1 | ||||
Mn | 0.366 | 0.379 | −0.275 | 0.502 | 0.018 | 0.737** | 0.353 | −0.643*** | −0.315 | 0.611*** | −0.710** | 1 | |||
Fe | 0.070 | 0.568 | −0.323 | 0.253 | −0.017 | 0.521 | 0.108 | −0.600*** | −0.326 | 0.515 | −0.601*** | 0.774** | 1 | ||
Cu | 0.096 | 0.730** | 0.024 | 0.272 | −0.020 | 0.515 | 0.146 | −0.573 | −0.067 | 0.821* | −0.794** | 0.722** | 0.693** | 1 | |
Zn | 0.570 | −0.010 | 0.641*** | 0.667*** | 0.711** | 0.625*** | 0.717** | −0.458 | −0.174 | 0.336 | 0.437 | 0.049 | −0.054 | −0.166 | 1 |
Se | −0.029 | 0.095 | −0.481 | −0.111 | −0.287 | −0.001 | −0.214 | −0.126 | −0.723 | 0.101 | −0.676 | 0.320 | 0.594 | 0.471 | −0.697** |
Parameter | Plant Part | Celery Type | |||||
---|---|---|---|---|---|---|---|
Leaf | Stalk | Root | |||||
Elixir | Samurai | Atlant | Primus | Egor | Dobrynya | ||
Ash (g·100 g-1 f.w.) | Leaves | 9.6 ± 0.8cA | 14.4 ± 1.5abA | 17.2 ± 1.6aA | 16.8 ± 1.5aA | 13.0 ± 1.1bA | 16.8 ± 1.4aA |
Petioles | 7.9 ± 0.7cA | 9.1 ± 0.8bcB | 10.5 ± 1.0bB | 10.3 ± 1.1bB | 9.2 ± 0.9bcB | 13.4 ± 1.2aB | |
Roots | - | - | - | 4.1 ± 0.3bC | 6.0 ± 0.5aC | ||
K | Leaves | 36.2 ± 2.6aB | 34.4 ± 2.0aB | 28.3 ± 1.7bB | 28.0 ± 1.4bB | 15.5 ± 1.1cC | 28.3 ± 1.1bA |
(g·kg-1 d.w.) | Petioles | 46.4 ± 3.5aA | 48.0 ± 3.9aA | 39.3 ± 2.5bA | 38.6 ± 2.2bA | 22.4 ± 1.8cA | 20.7 ± 0.9cC |
Roots | - | - | - | 18.6 ± 1.0bB | 25.6 ± 1.2aB | ||
Mn (mg·kg-1 d.w.) | Leaves | 8.1 ± 0.7cA | 13.1 ± 1.2bA | 12.9 ± 1.2bA | 13.2 ± 1.2bA | 28.6 ± 2.9aA | 24.9 ± 2.3aA |
Petioles | 8.2 ± 0.9bA | 6.1 ± 0.5cB | 7.1 ± 0.6bcB | 7.3 ± 0.8bcB | 10.8 ± 1.0aB | 13.3 ± 1.2aB | |
Roots | - | - | - | 8.5 ± 0.7aC | 6.5 ± 0.7bC | ||
Fe (mg·kg-1 d.w.) | Leaves | 96.2 ± 8.5dA | 125.8 ± 11.5cA | 107.3 ± 9.9cdA | 105.0 ± 10.1cdA | 189.3 ± 17.5bA | 342.5 ± 30.7aA |
Petioles | 91.3 ± 8.8cA | 53.8 ± 5.2dB | 48.4 ± 4.3dB | 46.7 ± 3.9dB | 202.6 ± 19.0aA | 151.3 ± 14.0bB | |
Roots | - | - | - | 47.8 ± 4.3aB | 54.2 ± 5.1aC | ||
Cu (mg·kg-1 d.w.) | Leaves | 2.5 ± 0.2bA | 4.6 ± 0.5aA | 5.3 ± 0.5aA | 5.5 ± 0.6aA | 5.2 ± 0.5aA | 5.7 ± 0.6aA |
Petioles | 2.5 ± 0.3cA | 2.6 ± 0.3cB | 2.4 ± 0.2cB | 2.5 ± 0.2cB | 4.1 ± 0.3bB | 6.2 ± 0.6aA | |
Roots | - | - | - | 4.1 ± 0.4bB | 5.6 ± 0.6aA | ||
Zn (mg·kg-1 d.w.) | Leaves | 10.1 ± 0.9aA | 8.9 ± 0.8aA | 9.2 ± 0.8aA | 8.9 ± 0.8aA | 6.4 ± 0.7bA | 9.9 ± 1.0a |
Petioles | 7.9 ± 0.8aB | 7.3 ± 0.6aA | 7.5 ± 0.8aA | 7.7 ± 0.7aA | 2.6 ± 0.3cB | 4.2 ± 0.3b | |
Roots | - | - | - | 7.2 ± 0.6bA | 9.1 ± 0.8a | ||
Se (µg·kg-1 d.w.) | Leaves | 26 ± 2bA | 43 ± 3aA | 30 ± 3bA | 28 ± 3bA | 44 ± 3aA | 42 ± 4aB |
Petioles | 22 ± 2cA | 25 ± 2bcA | 28 ± 2cA | 27 ± 2cA | 38 ± 4bA | 75 ± 6aA | |
Roots | 38 ± 3aA | 24 ± 2bC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golubkina, N.A.; Kharchenko, V.A.; Moldovan, A.I.; Koshevarov, A.A.; Zamana, S.; Nadezhkin, S.; Soldatenko, A.; Sekara, A.; Tallarita, A.; Caruso, G. Yield, Growth, Quality, Biochemical Characteristics and Elemental Composition of Plant Parts of Celery Leafy, Stalk and Root Types Grown in the Northern Hemisphere. Plants 2020, 9, 484. https://doi.org/10.3390/plants9040484
Golubkina NA, Kharchenko VA, Moldovan AI, Koshevarov AA, Zamana S, Nadezhkin S, Soldatenko A, Sekara A, Tallarita A, Caruso G. Yield, Growth, Quality, Biochemical Characteristics and Elemental Composition of Plant Parts of Celery Leafy, Stalk and Root Types Grown in the Northern Hemisphere. Plants. 2020; 9(4):484. https://doi.org/10.3390/plants9040484
Chicago/Turabian StyleGolubkina, Nadezhda A., Viktor A. Kharchenko, Anastasia I. Moldovan, Andrey A. Koshevarov, Svetlana Zamana, Sergey Nadezhkin, Alexey Soldatenko, Agnieszka Sekara, Alessio Tallarita, and Gianluca Caruso. 2020. "Yield, Growth, Quality, Biochemical Characteristics and Elemental Composition of Plant Parts of Celery Leafy, Stalk and Root Types Grown in the Northern Hemisphere" Plants 9, no. 4: 484. https://doi.org/10.3390/plants9040484
APA StyleGolubkina, N. A., Kharchenko, V. A., Moldovan, A. I., Koshevarov, A. A., Zamana, S., Nadezhkin, S., Soldatenko, A., Sekara, A., Tallarita, A., & Caruso, G. (2020). Yield, Growth, Quality, Biochemical Characteristics and Elemental Composition of Plant Parts of Celery Leafy, Stalk and Root Types Grown in the Northern Hemisphere. Plants, 9(4), 484. https://doi.org/10.3390/plants9040484