Micropropagation and Production of Somatic Seeds for Short-Term Storage of the Endangered Species Eryngium alpinum L.
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. The Plant Material
3.2. The Culture Media and Conditions
3.3. Micropropagation: Shoot Multiplication
3.4. Micropropagation: Root Induction
3.5. Organogenic Callus Induction and Proliferation
3.6. Synthetic Seed Production and Storage
3.7. Genome Size Estimation
3.8. The Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wyse-Jackson, P.S.; Akeroyd, J.R. Guidelines to Be Followed in the Design of Plant Conservation or Recovery Plans; Nature and Environment; Council of Europe: Strasbourg, France, 1994; p. 68. [Google Scholar]
- Gygax, A.; Bernhardt, K.G.; Jogan, N.; Montagnani, C.; Gigot, G. Eryngium alpinum. In The IUCN Red List of Threatened Species; Version 2014.3; IUCN: Gland, Switzerland, 2013. [Google Scholar]
- Gillot, P.; Garraud, L. Eryngium alpinum (L.). In Livre Rouge de la Flore Menacée; Museum National d’Histoire Naturelle: Paris, France; Conservatoire Botanique National de Porquerolles: Paris, France; Ministère de l’Environnement: Paris, France, 1995; p. 185. [Google Scholar]
- Gaudeul, M.; Till-Bottraud, I. Reproductive ecology of the endangered Alpine species Eryngium alpinum L. (Apiaceae): Phenology, gene dispersal and reproductive success. Ann. Bot. 2004, 93, 711–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasheva, K.; Kosturkova, G. Role of Biotechnology for protection of endangered medicinal plants. In Environmental Biotechnology—New Approaches and Perspective Applications; Petre, M., Ed.; Chapter 11; IntechOpen: London, UK, 2013. [Google Scholar]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Le Claire, E.; Schwaiger, S.; Banaigs, B.; Stuppner, H.; Gafner, F. Distribution of a new rosmarinic acid derivative Eryngium alpinum L. and other Apiaceae. J. Agric. Food Chem. 2005, 53, 4367–4372. [Google Scholar] [CrossRef] [PubMed]
- Kikowska, M.; Thiem, B.; Szopa, A.; Klimek-Szczykułowicz, M.; Rewers, M.; Sliwinska, E.; Ekiert, H. Comparative analysis of phenolic acids and flavonoids in shoot cultures of Eryngium alpinum L.—An endangered and protected species with medicinal value. Plant Cell Tissue Organ Cult. 2019, 139, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Kikowska, M.; Thiem, B.; Szopa, A.; Ekiert, H. Accumulation of valuable secondary metabolites: Phenolic acids and flavonoids in different in vitro systems of shoot cultures of the endangered plant species—Eryngium alpinum L. Plant Cell Tissue Organ Cult. 2020. [Google Scholar] [CrossRef] [Green Version]
- Crowden, R.K.; Harborne, J.B.; Heywood, V.H. Chemosystematics of the Umbelliferae—A general survey. Phytochemistry 1969, 8, 1963–1984. [Google Scholar] [CrossRef]
- Dunkic, V.; Vuko, E.; Bezic, N.; Kremer, D.; Ruscic, M. Composition and antiviral activity of the essential oils of Eryngium alpinum and E. amethystinum. Chem. Biodivers. 2013, 10, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, S.; Goel, M.K.; Kukreja, A.K.; Mishra, B.N. Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. Afr. J. Biotechnol. 2007, 6, 1484–1492. [Google Scholar] [CrossRef]
- Njenga, J. Production of Eryngium. N.C. Flower Growers’ Bull. 1995, 40, 9–11. [Google Scholar]
- Müller, D.; Leyser, O. Auxin, cytokinin and the control of shoot branching. Ann. Bot. 2011, 107, 1203–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiem, B.; Kikowska, M.; Krawczyk, A.; Więckowska, B.; Sliwinska, E. Phenolic acid and DNA contents of micropropagated Eryngium planum L. Plant Cell Tissue Organ Cult. 2013, 114, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Kikowska, M.; Thiem, B.; Sliwinska, E.; Rewers, M.; Kowalczyk, M.; Stochmal, A.; Długaszewska, J. Micropropagation of Eryngium campestre L. via shoot culture provides valuable uniform plant material with enhanced content of phenolic acids and antimicrobial activity. Acta Biol. Cracoviensia Bot. 2016, 58, 43–56. [Google Scholar] [CrossRef]
- Kikowska, M.; Thiem, B.; Sliwinska, E.; Rewers, M.; Kowalczyk, M.; Stochmal, A.; Oleszek, W. The effect of nutritional factors and plant growth regulators on micropropagation and production of phenolic acids and saponins from plantlets and adventitious root cultures of Eryngium maritimum L. J. Plant Growth Regul. 2014, 33, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Werbrouck, S.P.O.; van der Jeugt, B.; Dewitte, W.; Prinsen, E.; Van Onckeken, H.A.; Debergh, P.C. The metabolism of benzyladenine in S. floribundum Scott ‘Petite’ in relation to acclimatization problems. Plant Cell Rep. 1995, 14, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Kikowska, M.; Thiem, B. Alginate-encapsulated shoot tips and nodal segments in micropropagation of medicinal plants. A review. Herba Polonica 2011, 57, 45–57. [Google Scholar]
- Chandana, B.C.; Kumari Nagaveni, H.C.; Heena, M.S.; Shashikala, S.K.; Lakshmana, D. Role of plant tissue culture in micropropagation, secondary metabolites production and conservation of some endangered medicinal crops. J. Pharmacogn. Phytochem. 2018, SP3, 246–251. [Google Scholar]
- Saxena, A.; Shukla, M.; Saxena, P. Synthetic Seeds: Relevance to Endangered Germplasm Conservation In Vitro. In Synthetic Seeds; Faisal, M., Alatar, A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Ngezahayo, F.; Liu, B. Axillary bud proliferation approach for plant biodiversity conservation and restoration. Int. J. Biodivers. 2014, 2014, 727025. [Google Scholar] [CrossRef] [Green Version]
- Galbraith, D.W.; Harkins, K.R.; Maddox, J.M.; Ayres, N.M.; Sharma, D.P.; Firoozabady, E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 1983, 220, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Marie, D.; Brown, S.C. A cytometric exercise in plant histograms, with 2C values for 70 species. Biol. Cell. 1993, 78, 41–51. [Google Scholar] [CrossRef]
MS Medium Supplementation | Growth Parameters | ||||
---|---|---|---|---|---|
Plant Growth Regulators | |||||
Cytokinin (mg/L) | Auxin (mg/L) | Gibberellin (mg/L) | Induction (%) | Shoot No./Explant ± SE | Shoot Length (CM) ± SE |
Sixth Subculture | |||||
BAP [2.0] | IAA [1.0] | GA3 [2.0] | 100 | 4.70 ± 0.08 g | 3.87 ± 0.22 b |
BAP [2.0] | IAA [1.0] | GA3 [1.0] | 100 | 24.10 ± 1.35 a | 2.12 ± 0.05 e |
BAP [1.0] | IAA [0.5] | GA3 [1.0] | 100 | 13.70 ± 0.70 dc | 2.05 ± 0.15 e |
BAP [0.5] | IAA [0.5] | GA3 [0.5] | 80 | 7.50 ± 0.35 ef | 3.43 ± 0.16 c |
Twelfth Subculture | |||||
BAP [2.0] | IAA [1.0] | GA3 [2.0] | 100 | 3.50 ± 0.28 g | 4.57 ± 0.13 a |
BAP [2.0] | IAA [1.0] | GA3 [1.0] | 100 | 18.90 ± 0.80 b | 2.23 ± 0.09 e |
BAP [1.0] | IAA [0.5] | GA3 [1.0] | 100 | 15.20 ± 0.63 c | 2.31 ± 0.04 e |
BAP [0.5] | IAA [0.5] | GA3 [0.5] | 100 | 8.10 ± 0.48 e | 3.80 ± 0.08 b |
Eighteenth Subculture | |||||
BAP [2.0] | IAA [1.0] | GA3 [2.0] | 100 | 5.40 ± 0.58fg | 3.43 ± 0.01c |
BAP [2.0] | IAA [1.0] | GA3 [1.0] | 100 | 25.10 ± 1.38 a | 2.16 ± 0.05 e |
BAP [1.0] | IAA [0.5] | GA3 [1.0] | 100 | 15.10 ± 1.19 c | 2.09 ± 0.03 e |
BAP [0.5] | IAA [0.5] | GA3 [0.5] | 80 | 5.60 ± 0.16 fg | 4.08 ± 0.09 b |
Twenty Fourth Subculture | |||||
BAP [2.0] | IAA [1.0] | GA3 [2.0] | 80 | 5.20 ± 0.29 fg | 4.76 ± 0.08 a |
BAP [2.0] | IAA [1.0] | GA3 [1.0] | 90 | 20.10 ± 0.74 b | 2.08 ± 0.04 e |
BAP [1.0] | IAA [0.5] | GA3 [1.0] | 100 | 12.50 ± 1.45 d | 3.01 ± 0.03 d |
BAP [0.5] | IAA [0.5] | GA3 [0.5] | 100 | 5.60 ± 0.31 fg | 3.42 ± 0.04 c |
Auxin(s) (1.0 mg/L) | Induction (%) | Mean No. of Roots ± SE | Mean Root Length ± SE |
---|---|---|---|
- | 50 | 1.4 ± 0.64 e | 1.96 ± 0.17 cd |
IAA | 100 | 2.9 ± 0.86 de | 2.36 ± 0.12 a |
IBA | 100 | 7.5 ± 2.23 d | 1.77 ± 0.07 cd |
NAA | 100 | 27.4 ± 1.35 b | 0.61 ± 0.04 b |
2,4-D | 100 | 15.00 ± 2.69 c | 1.79 ± 0.06 cd |
Dic | 100 | 3.00 ± 1.53 de | 1.68 ± 0.12 d |
Pic | 0 | 0.00 ± 0.00 e | 0.00 ± 0.00 e |
IAA + IBA | 100 | 20.2 ± 2.28 c | 2.09 ± 0.05 a |
IAA + NAA | 100 | 34.5 ± 2.04 a | 0.80 ± 0.04 b |
IBA + NAA | 100 | 28.9 ± 2.79 b | 0.90 ± 0.04 b |
Propagules | Sodium Alginate | Calcium Chloride | Bead Characteristic |
---|---|---|---|
Axillary buds | 2% | 100 mM | Too soft to handle |
Axillary buds | 2% | 200 mM | Too soft to handle |
Axillary buds | 2% | 300 mM | Too soft to handle |
Axillary buds | 3% | 100 mM | Formed tails |
Axillary buds | 3% | 200 mM | Formed tails |
Axillary buds | 3% | 300 mM | Too squashy |
Axillary buds | 4% | 100 mM | Deformed and isodiametric beads |
Axillary buds | 4% | 200 mM | Deformed and isodiametric beads |
Axillary buds | 4% | 300 mM | Isodiametric beads |
Organogenic callus | 2% | 100 mM | Too soft to handle |
Organogenic callus | 2% | 200 mM | Too soft to handle |
Organogenic callus | 2% | 300 mM | Too soft to handle |
Organogenic callus | 3% | 100 mM | Formed tails |
Organogenic callus | 3% | 200 mM | Formed tails |
Organogenic callus | 3% | 300 mM | Too squashy |
Organogenic callus | 4% | 100 mM | Deformed and isodiametric beads |
Organogenic callus | 4% | 200 mM | Deformed and isodiametric beads |
Organogenic callus | 4% | 300 mM | Isodiametric beads |
Propagules | Sodium Alginate | Calcium Chloride | Storage Duration | Survival Percentage | Recovery Percentage (±SE) |
---|---|---|---|---|---|
Axillary buds | 4% | 300 mM | 0 months | 100 | 100 ± 0.00 a |
Axillary buds | 4% | 300 mM | 2 months | 100 | 74 ± 2.08 b |
Axillary buds | 4% | 300 mM | 4 months | 90 | 56 ± 1.83 c |
Axillary buds | 4% | 300 mM | 6 months | 60 | 42 ± 1.04 d |
Organogenic callus | 4% | 300 mM | 0 months | 80 | 46 ± 0.90 e |
Organogenic callus | 4% | 300 mM | 2 months | 60 | 32 ± 0.97 f |
Organogenic callus | 4% | 300 mM | 4 months | 40 | 26 ± 0.76 g |
Organogenic callus | 4% | 300 mM | 6 months | 20 | 15 ± 0.44 h |
Plant Material | DNA Content (PG/2C) ± SE |
---|---|
Leaf of shoot culture at passage 6 | 2.35 ± 0.01 ns |
Leaf of shoot culture at passage 12 | 2.35 ± 0.01 |
Leaf of shoot culture at passage 18 | 2.35 ± 0.00 |
Leaf of shoot culture at passage 24 | 2.32 ± 0.01 |
Callus | 2.36 ± 0.01 |
Leaf of callus-derived shoots | 2.43 ± 0.04 |
Leaf of encapsulated callus-derived shoots | 2.35 ± 0.01 |
Leaf of encapsulated bud-derived shoots | 2.34 ± 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikowska, M.; Sliwinska, E.; Thiem, B. Micropropagation and Production of Somatic Seeds for Short-Term Storage of the Endangered Species Eryngium alpinum L. Plants 2020, 9, 498. https://doi.org/10.3390/plants9040498
Kikowska M, Sliwinska E, Thiem B. Micropropagation and Production of Somatic Seeds for Short-Term Storage of the Endangered Species Eryngium alpinum L. Plants. 2020; 9(4):498. https://doi.org/10.3390/plants9040498
Chicago/Turabian StyleKikowska, Małgorzata, Elwira Sliwinska, and Barbara Thiem. 2020. "Micropropagation and Production of Somatic Seeds for Short-Term Storage of the Endangered Species Eryngium alpinum L." Plants 9, no. 4: 498. https://doi.org/10.3390/plants9040498
APA StyleKikowska, M., Sliwinska, E., & Thiem, B. (2020). Micropropagation and Production of Somatic Seeds for Short-Term Storage of the Endangered Species Eryngium alpinum L. Plants, 9(4), 498. https://doi.org/10.3390/plants9040498