Phenolic Compounds from An Algerian Endemic Species of Hypochaeris laevigata var. hipponensis and Investigation of Antioxidant Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction Method
2.2. Preparation of Standards
2.3. LC-MS/MS Analysis
2.4. Quantification of Total Phenols
2.5. Quantification of Flavonoids
2.6. Antioxidant Activities
2.6.1. Evaluation of Antioxidant Activity by β-Carotene Bleaching Test
2.6.2. DPPH Free Radical Scavenging Test
2.6.3. ABTS Radical Cation Reduction Test
2.6.4. Cupric Reducing Antioxidant Capacity (CUPRAC) Test
2.6.5. Ferrous Ions Chelating Test
2.7. Statistical Analysis
3. Results and Discussion
3.1. Analysis of LC–MS/MS
3.2. Total Phenolic and Flavonoid Contents
3.3. Antioxidant Activities
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamel, T. Contribution à l’étude de l’endémisme chez les végétaux vasculaires dans la péninsule de l’Edough (Nord-Est algérien). Ph.D. Thesis, Université Badji Mokhtar, Annaba, Algérie, 2013. Available online: https://www.researchgate.net/publication/319310678 (accessed on 14 February 2020). [CrossRef]
- Stebbins, G.L. Chromosomal changes, genetic recombination and speciation. In Chromosomal Evolution in Higher Plants; Arnold, E., Ed.; Edward Arnold: London, UK, 1971; pp. 107–111. [Google Scholar]
- Quézel, P.; Santa, S. Nouvelle Flore d’Algérie et des Régions Désertiques Méridionales; 2 Tomes, Editions; CNRS: Paris, France, 1962; 1170p. [Google Scholar]
- Jamuna, S.; Paulsamy, S.; Karthika, K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac. J. Tro. Bio. 2014, 4, S359–S367. [Google Scholar]
- Jamuna, S.; Paulsamy, S.; Karthika, K. Screening of in vitro antioxidant activity of methanolic leaf and root extracts of Hypochaeris radicata L. (Asteraceae). J. Appl. Pharm. Sci. 2012, 2, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Jamuna, S.; Paulsamy, S.; Karthika, K. In vitro antibacterial activity of leaf and root extracts of Hypochaeris radicata L. (Asteraceae): A medicinal plants pecies in habiting the high hills of Nilgiris, the Western Ghats. Int. J. Pharm. Pharm. Sci. 2013, 5, 175–178. [Google Scholar]
- Jamuna, S.; Paulsamy, S.; Karthika, K. In vitro antifungal activity of leaf and root extracts of the medicinal plant, Hypochaeris radicata L. Int. J. Pharm. Pharm. Sci. 2013, 5, 758–761. [Google Scholar]
- Pullaiah, T. Encyclopedia of World Medicinal Plants; Regency publication: New Delhi, India, 2006; pp. 1–525. [Google Scholar]
- Li, R.; Guo, M.; Zhang, G.; Xu, X.; Li, K. Neuroprotection of Nicotiflorin in Permanent Focal CerebralIschemia and in Neuronal Cultures. Biol. Pharm. Bull. 2007, 29, 1868–1872. [Google Scholar] [CrossRef] [Green Version]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food. Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Miller, E.D. Isolation and characterization of the cyanogenbromide peptides from the alpha. 1 (II) chain of chick cartilage collagen. Biochemistry 1971, 10, 3030–3035. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Int. J. Sci. Nat. 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Maisuthisakul, P.; Suttajit, M.; Pongsawatmanit, R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 2007, 100, 1409–1418. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Bio. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Decker, E.A.; Welch, B. Roleof ferritin as a lipid oxidation catalystin muscle food. J. Agric. Food Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Heleno, S.A.; Martins, A.; Queiroz, M.J.R.; Ferreira, I.C. Bioactivity of phenolic acids: Metabolites versusparent compounds: A review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Hur, J.Y.; Soh, Y.; Kim, B.-H.; Suk, K.; Sohn, N.W.; Kim, H.C.; Kwon, H.C.; Lee, K.R.; Kim, S.Y. Neuroprotective and Neurotrophic Effects of Quinic Acids from Asterscaberin PC12Cells. Biol. Pharm. Bull. 2001, 24, 921–924. [Google Scholar] [CrossRef] [Green Version]
- Tapas, A.R.; Sakarkar, D.M.; Kakde, R.B. Flavonoids as nutraceuticals: A review. Trop. J. Pharm. Res. 2008, 7, 1089–1099. [Google Scholar] [CrossRef]
- Tripoli, E.; LaGuardia, M.; Giammanco, S.; DiMajo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Tsolmon, S.; Nakazaki, E.; Han, J.; Isoda, H. Apigetrin induces erythroid differentiation of human leukemia cells K562: Proteomics approach. Mol. Nutr. Food Res. 2011, 55, S93–S102. [Google Scholar] [CrossRef]
- Rao, Y.K.; Lee, M.J.; Chen, K.; Lee, Y.-C.; Wu, W.-S.; Tzeng, Y.-M. Insulin-Mimetic Action of Rhoifolin and Cosmosiin Isolated from Citrus grandis (L.) Osbeck Leaves: Enhanced Adiponectin Secretion and Insulin Receptor Phosphorylation in 3T3-L1 Cells. Evid. Based Complementary Altern. Med. 2011, 2011, 624375. [Google Scholar] [CrossRef] [Green Version]
- Mariod, A.A.; Ibrahim, R.M.; Ismail, M.; Ismail, N. Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seed cake. Food Chem. 2009, 116, 306–312. [Google Scholar] [CrossRef]
- Martinez, J.; Nieto, G.; Castillo, J.; Ros, G. Influence of in vitro gastrointestinal digestion and/ orgrape seed extract addition on antioxidant capacity of meatemul-sions. Lebensmittel- Wissenschaftund-Technologie LWT 2014, 59, 834–840. [Google Scholar] [CrossRef]
- Nieto, G.; Bañon, S.; Garrido, M.D. Incorporation of thyme leaves in the diet of pregnant and lactating ewes: Effect on the fatty acid profile of lamb. Small Rum. Res. 2012, 105, 140–147. [Google Scholar] [CrossRef]
- Nieto, G.; Bañon, S.; Garrido, M.D. Administration of distillate thyme leaves in to the diet of Segureña ewes: Effect on lambme at quality. Animal 2012, 6, 2048–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, G. Incorporation of by- products of rosemary and thyme in the diet of ewes: Effect on the fatty acid profile of lamb. Eur. Food Res. Technol. 2013, 236, 379–389. [Google Scholar] [CrossRef]
- Martínez, L.; Jongberg, S.; Ros, G.; Skibsted, L.H.; Nieto, G. Plant derived ingredients rich in nitrates or phenolics for protection of pork against protein oxidation. Food Res. Int. 2020, 129, 108789. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Rangarajan, M.; Shao, Y.; LaVoie, E.J.; Huang, T.-C.; Ho, C.-T. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem. 1998, 46, 4869–4873. [Google Scholar] [CrossRef]
- Gorinstein, S.; Leontowicz, M.; Leontowicz, H.; Najman, K.; Namiesnik, J.; Park, Y.-S.; Jung, S.-T.; Kang, S.-G.; Trakhtenberg, S. Supplementation of garlic lowers lipids and increases antioxidant capacity in plasma of rats. Nutr. Res. 2006, 26, 362–368. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
No. | Compounds | Retention Time (min) | Scan Type | Polarity or (ESI Mode) | Precursor Ion [M-H]− (m/z) | MS2Fragments or Product Ions (m/z) |
---|---|---|---|---|---|---|
1 | Quinic acid | 1.13 | MRM | Negative | 190.95 | 85.3–93.3 |
2 | Malic acid | 1.23 | MRM | Negative | 133.00 | 115.2–71.3 |
3 | Fumaric acid | 1.48 | MRM | Negative | 115.00 | 71.4 |
4 | Gallic acid | 3.00 | MRM | Negative | 168.85 | 125.2–79.2 |
5 | Protocatechic acid | 4.93 | MRM | Negative | 152.95 | 108.3 |
6 | Pyrocatechol | 6.48 | MRM | Negative | 109.00 | 108.35–91.3 |
7 | Chlorogenic acid | 7.13 | MRM | Negative | 353.15 | 191.2 |
8 | 4-OH-Benzoic acid | 7.39 | MRM | Negative | 136.95 | 93.3–65.3 |
9 | Vanillic acid | 8.57 | MRM | Negative | 166.90 | 152.3–108.3 |
10 | Caffeic acid | 8.80 | MRM | Negative | 178.95 | 135.2–134.3 |
11 | Syringic acid | 9.02 | MRM | Negative | 196.95 | 182.2–167.3 |
12 | Vanillin | 10.87 | MRM | Negative | 151.00 | 1363–92.2 |
13 | Salicylic acid | 11.16 | MRM | Negative | 136.95 | 93.3–65.3 |
14 | p-Coumaric acid | 11.53 | MRM | Negative | 162.95 | 119.3–93.3 |
15 | Rutin | 12.61 | MRM | Negative | 609.05 | 300.1–271.1 |
16 | Ferulic acid | 12.62 | MRM | Negative | 192.95 | 178.3 |
17 | Sinapic acid | 12.66 | MRM | Negative | 222.95 | 208.3–149.2 |
18 | Hesperidin | 12.67 | MRM | Negative | 609 | 301.1 |
19 | Isoquercitrin | 13.42 | MRM | Negative | 463.00 | 300.1–271.1 |
20 | Rosmarinic acid | 14.54 | MRM | Negative | 359.00 | 161.2–197.2 |
21 | Nicotiflorin | 14.68 | MRM | Negative | 593.05 | 285.1–255.2 |
22 | α-Coumaric acid | 15.45 | MRM | Negative | 162.95 | 119.4–93.3 |
23 | Rhoifolin | 16.11 | MRM | Negative | 577.05 | 269.2–211.1 |
24 | Quercitrin | 16.41 | MRM | Negative | 447.15 | 301.1–255.1 |
25 | Apigetrin | 16.59 | MRM | Negative | 431.00 | 268.2–239.2 |
26 | Coumarin | 17.40 | MRM | Negative | 147.05 | 91.0–103.2 |
27 | Myricetin | 18.72 | MRM | Negative | 317.00 | 179.2–151.3 |
28 | Fisetin | 19.30 | MRM | Negative | 284.95 | 135.2–121.3 |
29 | Cinnamic acid | 25.61 | MRM | Negative | 147.00 | 103.15–77.3 |
30 | Liquiritigenin | 25.62 | MRM | Negative | 254.95 | 119.3–135.1 |
31 | Quercetin | 28.17 | MRM | Negative | 300.90 | 151.2–179.2 |
32 | Luteolin | 28.27 | MRM | Negative | 284.75 | 133.2–151.2 |
33 | Naringenin | 30.68 | MRM | Negative | 270.95 | 151.2–119.3 |
34 | Apigenin | 31.43 | MRM | Negative | 268.95 | 117.3–151.2 |
35 | Hesperetin | 31.76 | MRM | Negative | 300.95 | 164.2–136.2 |
36 | Kaempferol | 31.88 | MRM | Negative | 284.75 | 255.1–117.3 |
37 | Chrysin | 36.65 | MRM | Negative | 252.95 | 143.3–119.4 |
N | Compounds | Conc. Range (Linearity Range) (μg/mL) | R2 | LOD (μg/mL) | LOQ (μg/mL) | Inter-Day (n = 3) RSD (%) | Intra-Day (n = 3) RSD (%) | Recovery % (n = 3) | U (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Inter-Day | Intra-Day | |||||||||
1 | Quinic acid | 0.250–10 | 0.996 | 0.075 | 0.079 | 0.259 | 0.274 | 100.28 | 98.77 | 0.0082 |
2 | Malic acid | 0.250–10 | 0.999 | 0.055 | 0.067 | 0.477 | 0.527 | 101.26 | 99.83 | 0.0113 |
3 | Fumaric acid | 0.10–5 | 0.997 | 0.028 | 0.034 | 0.536 | 0.460 | 99.74 | 99.86 | 0.0124 |
4 | Gallic acid | 0.250–10 | 0.998 | 0.095 | 0.106 | 1.601 | 01.443 | 100.00 | 100.45 | 0.0282 |
5 | Protocatechic acid | 0.100–5 | 0.995 | 0.028 | 0.031 | 1.236 | 1.296 | 99.40 | 101.07 | 0.0411 |
6 | Pyrocatechol | 1–20 | 0.996 | 0.261 | 0.278 | 1.313 | 1.339 | 99.98 | 99.93 | 0.0235 |
7 | Chlorogenic acid | 0.025–1 | 0.998 | 0.006 | 0.008 | 0.058 | 0.076 | 100.80 | 99.96 | 0.0069 |
8 | 4-OH-Benzoic acid | 0.250–10 | 0.998 | 0.033 | 0.038 | 1.284 | 1.538 | 99.66 | 100.05 | 0.0289 |
9 | Vanillic acid | 0.1–20 | 0.999 | 0.122 | 0.139 | 0.528 | 0.619 | 100.09 | 104.09 | 0.0508 |
10 | Caffeic acid | 0.025–1 | 0.998 | 0.018 | 0.022 | 1.454 | 1.469 | 100.91 | 98.82 | 0.0354 |
11 | Syringic acid | 0.1–20 | 0.996 | 0.021 | 0.233 | 1.049 | 1.345 | 99.92 | 99.97 | 0.0238 |
12 | Vanillin | 0.250–10 | 0.998 | 0.044 | 0.053 | 0.696 | 0.793 | 99.67 | 99.61 | 0.0280 |
13 | Salicylic acid | 0.025–1 | 0.989 | 0.005 | 0.006 | 1.016 | 1.242 | 100.98 | 99.01 | 0.0329 |
14 | p-Coumaric acid | 0.025–1 | 0.992 | 0.007 | 0.009 | 1.820 | 1.727 | 100.61 | 101.22 | 0.0516 |
15 | Rutin | 0.025–1 | 0.997 | 0.005 | 0.006 | 0.473 | 0.624 | 100.99 | 98.01 | 0.0159 |
16 | Ferulic acid | 0.250–10 | 0.997 | 0.036 | 0.042 | 0.708 | 0.619 | 99.98 | 100.28 | 0.0494 |
17 | Sinapic acid | 0.250–10 | 0.992 | 0.078 | 0.086 | 1.446 | 1.517 | 100.16 | 99.96 | 0.0281 |
18 | Hesperidin | 0.025–1 | 0.998 | 0.003 | 0.004 | 0.945 | 1.126 | 101.73 | 101.26 | 0.0262 |
19 | Isoquercitrin | 0.025–1 | 0.999 | 0.005 | 0.006 | 0.682 | 0.515 | 100.59 | 100.72 | 0.0133 |
20 | Rosmarinic acid | 0.100–5 | 0.994 | 0.006 | 0.008 | 2.014 | 1.751 | 99.20 | 103.43 | 0.0713 |
21 | Nicotiflorin | 0.100–5 | 0.991 | 0.022 | 0.025 | 0.737 | 0.875 | 102.55 | 100.97 | 0.0276 |
22 | α-Coumaric acid | 0.025–1 | 0.999 | 0.024 | 0.031 | 2.730 | 2.566 | 98.34 | 99.06 | 0.0513 |
23 | Rhoifolin | 0.100–5 | 0.999 | 0.023 | 0.027 | 0.747 | 1.528 | 101.04 | 101.73 | 0.0941 |
24 | Quercitrin | 0.100–5 | 0.999 | 0.022 | 0.025 | 1.528 | 2.320 | 99.72 | 100.62 | 2.0079 |
25 | Apigetrin | 0.025–1 | 0.993 | 0.005 | 0.006 | 1.797 | 1.607 | 101.39 | 100.41 | 0.0597 |
26 | Coumarin | 1–20 | 0.994 | 0.208 | 0.228 | 1.306 | 1.239 | 99.94 | 100.08 | 0.0237 |
27 | Myricetin | 0.250–10 | 0.999 | 0.053 | 0.057 | 0.652 | 0.711 | 99.98 | 100.04 | 0.0126 |
28 | Fisetin | 0.250–10 | 0.991 | 0.054 | 0.051 | 0.557 | 0.820 | 99.87 | 100.03 | 0.0148 |
29 | Cinnamic acid | 5–20 | 0.996 | 0.821 | 0.859 | 0.648 | 0.816 | 100.05 | 99.92 | 0.0143 |
30 | Liquiritigenin | 0.025–1 | 0.996 | 0.005 | 0.006 | 1.849 | 1.738 | 100.33 | 99.95 | 0.0341 |
31 | Quercetin | 0.100–5 | 0.990 | 0.023 | 0.028 | 1.589 | 1.360 | 98.47 | 100.10 | 0.0543 |
32 | Luteolin | 0.025–1 | 0.997 | 0.005 | 0.006 | 0.575 | 0.696 | 100.77 | 99.52 | 0.0174 |
33 | Naringenin | 0.025–1 | 0.995 | 0.005 | 0.006 | 2.054 | 2.019 | 99.88 | 101.00 | 0.0521 |
34 | Apigenin | 0.025–1 | 0.990 | 0.005 | 0.006 | 2.304 | 2.204 | 101.44 | 101.33 | 0.0650 |
35 | Hesperetin | 0.025–1 | 0.997 | 0.005 | 0.006 | 3.209 | 2.605 | 98.85 | 99.43 | 0.0562 |
36 | Kaempferol | 1–20 | 0.992 | 0.206 | 0.214 | 1.436 | 1.070 | 99.97 | 99.85 | 0.0209 |
37 | Chrysin | 0.02–1 | 0.993 | 0.005 | 0.006 | 0.490 | 0.630 | 100.33 | 100.43 | 2.0083 |
N | Compounds | DCM | EA | BuOH |
---|---|---|---|---|
1 | Quinic acid | N.I | 9633.02 | 21,606.73 |
2 | Malic acid | N.I | 349.27 | 750.10 |
3 | Fumaric acid | N.I | N.I | N.I |
4 | Gallic acid | N.I | 223.26 | 115.09 |
5 | Protocatechic acid | N.I | 547.25 | 54.77 |
6 | Pyrocatechol | N.I | N.I | N.I |
7 | Chlorogenic acid | 9.39 | 2689.03 | 11,956.23 |
8 | 4-OH-Benzoic acid | N.I | 912.26 | N.I |
9 | Vanillic acid | 148.3 | 1027.7 | N.I |
10 | Caffeic acid | 1.82 | 1537.29 | 98.47 |
11 | Syringic acid | N.I | 1235.76 | N.I |
12 | Vanillin | 58.32 | N.I | N.I |
13 | Salicylic acid | 17.5 | 69.03 | 3.54 |
14 | p-Coumaric acid | 10.38 | 1263.17 | 31.72 |
15 | Rutin | N.I | 198.71 | 1348.25 |
16 | Ferulicacid | 224.36 | 1319.88 | N.I |
17 | Sinapic acid | N.I | N.I | 948.68 |
18 | Hesperidin | N.I | 77.24 | 74.7 |
19 | Isoquercitrin | N.I | 98.55 | 76.3 |
20 | Rosmarinic acid | N.I | 39.58 | 12.49 |
21 | Nicotiflorin | N.I | N.I | N.I |
22 | α-Coumaric acid | N.I | N.I | N.I |
23 | Rhoifolin | N.I | 28.58 | 250.08 |
24 | Quercitrin | N.I | 83.47 | N.I |
25 | Apigetrin | N.I | 54.62 | 18.07 |
26 | Coumarin | 1171.49 | N.I | N.I |
27 | Myricetin | N.I | N.I | N.I |
28 | Fisetin | N.I | N.I | N.I |
29 | Cinnamic acid | N.I | N.I | N.I |
30 | Liquiritigenin | N.I | N.I | N.I |
31 | Quercetin | N.I | N.I | N.I |
32 | Luteolin | N.I | N.I | N.I |
33 | Naringenin | N.I | N.I | N.I |
34 | Apigenin | 151.43 | 35.5 | N.I |
35 | Hesperetin | N.I | N.I | N.I |
36 | Kaempferol | N.I | N.I | N.I |
37 | Chrysin | N.I | N.I | N.I |
Extracts | Total Phenols a | Flavonoids b |
---|---|---|
DCM | 184.07 ± 0.17 | 16.28 ± 0.16 |
EA | 202.86 ± 14.64 | 17.92 ± 0.12 |
BuOH | 200 ± 10.93 | 46.76 ± 0.36 |
Extract | β-Carotene IC50 (µg/mL) | DPPH IC50 (µg/mL) | ABTS+ IC50 (µg/mL) | CUPRAC A0.50 (µg/mL) | Fe+2 Chelation IC50 (µg/mL) |
---|---|---|---|---|---|
Dichloromethane | 5.02 ± 0.95 | 47.24 ± 0.11 | 13.10 ± 0.97 | 16.86 ± 3.02 | >800 |
Ethyl acetate | 7.60 ± 4.37 | 8.70 ± 1.87 | 4.32 ± 0.09 | 1.48 ± 0.33 | >800 |
n-Butanol | 5.66 ± 2.03 | 8.12 ± 1.47 | 15.02 ± 0.73 | 3.00 ± 0.98 | >800 |
(+)-Catechin a | 8.79 ± 0.89 | 4.32 ± 0.15 | 1.16 ± 0.02 | NT | NT |
Quercetin a | 1.81 ± 0.11 | 2.07 ± 0.10 | 1.18 ± 0.03 | NT | NT |
α-Tocopherol a | 2.10 ± 0.08 | 7.31 ± 0.17 | 4.31 ± 0.10 | 10.20 ± 0.01 | NT |
BHT a | 1.34 ± 0.04 | 45.4 ± 0.47 | 4.10 ± 0.06 | 3.80 ± 0.00 | NT |
EDTA a | NT | NT | NT | NT | 6.50 ± 0.07 |
Ascorbic acid a | NT | NT | NT | NT | NT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souilah, N.; Ullah, Z.; Bendif, H.; Medjroubi, K.; Hazmoune, T.; Hamel, T.; Öztürk, M.; Nieto, G.; Akkal, S. Phenolic Compounds from An Algerian Endemic Species of Hypochaeris laevigata var. hipponensis and Investigation of Antioxidant Activities. Plants 2020, 9, 514. https://doi.org/10.3390/plants9040514
Souilah N, Ullah Z, Bendif H, Medjroubi K, Hazmoune T, Hamel T, Öztürk M, Nieto G, Akkal S. Phenolic Compounds from An Algerian Endemic Species of Hypochaeris laevigata var. hipponensis and Investigation of Antioxidant Activities. Plants. 2020; 9(4):514. https://doi.org/10.3390/plants9040514
Chicago/Turabian StyleSouilah, Nabila, Zain Ullah, Hamdi Bendif, Kamel Medjroubi, Tahar Hazmoune, Tarek Hamel, Mehmet Öztürk, Gema Nieto, and Salah Akkal. 2020. "Phenolic Compounds from An Algerian Endemic Species of Hypochaeris laevigata var. hipponensis and Investigation of Antioxidant Activities" Plants 9, no. 4: 514. https://doi.org/10.3390/plants9040514
APA StyleSouilah, N., Ullah, Z., Bendif, H., Medjroubi, K., Hazmoune, T., Hamel, T., Öztürk, M., Nieto, G., & Akkal, S. (2020). Phenolic Compounds from An Algerian Endemic Species of Hypochaeris laevigata var. hipponensis and Investigation of Antioxidant Activities. Plants, 9(4), 514. https://doi.org/10.3390/plants9040514