Phytic Acid and Mineral Biofortification Strategies: From Plant Science to Breeding and Biotechnological Approaches
Abstract
1. Introduction
2. Mineral Transport, Seed Accumulation, and Breeding to Increase Concentration in Seeds
2.1. Mineral Transport and Seed Accumulation
2.2. Germplasm Screening: Genetic Variation and Identification of Genomic Regions and Molecular Markers (Quantitative Trait Loci (QTLs), Single Nucleotide Polymorphisms (SNPs))
3. Decreasing Antinutritional Compounds Concentration: Four Decades of Research and Novel Perspectives for lpa Mutants
3.1. Some Possibilities to Redeem the so far Neglected lpa Crops?
3.2. lpa Mutants in Different Classes of Transporters: Not Always so Obvious
3.3. Response to P Fertilization
3.4. lpa Mutants: Isolation and Characterization of New Mutants and Description of a Novel Screening Method in Maize
3.5. Inositol Pyrophosphate: Suggested Strategies for the Development of Novel lpa Mutants
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jha, A.B.; Warkentin, T.D. Biofortification of pulse crops: Status and future perspectives. Plants 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kaur, G.; Kumar, A.; Meena, V.; Ram, H.; Kaur, J.; Pandey, A.K. Gene expression pattern of Vacuolar-Iron Transporter-Like (VTL) genes in hexaploid wheat during metal stress. Plants 2020, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Pongrac, P.; Arčon, I.; Castillo-Michel, H.; Vogel-Mikuš, K. Mineral element composition in grain of awned and awnletted wheat. Plants 2020, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Raboy, V. Crops: Observations based on four decades of research. Plants 2020, 9, 140. [Google Scholar] [CrossRef]
- Cominelli, E.; Pilu, R.; Sparvoli, F. Phytic acid and transporters: What can we learn from low phytic acid mutants. Plants 2020, 9, 69. [Google Scholar] [CrossRef]
- Sacchi, G.A.; Nocito, F.F. Plant sulfate transporters in the low phytic acid network: Some educated guesses. Plants 2019, 8, 616. [Google Scholar] [CrossRef]
- Borlini, G.; Rovera, C.; Landoni, M.; Cassani, E.; Pilu, R. lpa1-5525: A new lpa1 mutant isolated in a mutagenized population by a novel non-disrupting screening method. Plants 2019, 8, 209. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, Y.; Tan, Y.; Huang, J.; Shu, Q. Mutation of inositol 1,3,4-trisphosphate 5/6-kinase6 impairs plant growth and phytic acid synthesis in rice. Plants 2019, 8, 114. [Google Scholar] [CrossRef]
- Fukushima, A.; Perera, I.; Hosoya, K.; Akabane, T.; Hirotsu, N. Genotypic differences in the effect of P fertilization on phytic acid content in rice grain. Plants 2020, 9, 146. [Google Scholar] [CrossRef]
- Taliman, N.A.; Dong, Q.; Echigo, K.; Raboy, V.; Saneoka, H. Effect of phosphorus fertilization on the growth, photosynthesis, nitrogen fixation, mineral accumulation, seed yield, and seed quality of a soybean low-phytate line. Plants 2019, 8, 119. [Google Scholar] [CrossRef]
- Freed, C.; Adepoju, O.; Gillaspy, G. Can inositol pyrophosphates inform strategies for developing low phytate crops. Plants 2020, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Sparvoli, F.; Cominelli, E. Seed biofortification and phytic acid reduction: A conflict of interest for the plant. Plants 2015, 4, 728. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.O.; Bracarense, A.P. Phytic acid: From antinutritional to multiple protection factor of organic systems. J. Food Sci. 2016, 81, R1357–R1362. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.S.; Bulley, S.J.; Pisani, F.; Irvine, R.F.; Saiardi, A. A novel method for the purification of inositol phosphates from biological samples reveals that no phytate is present in human plasma or urine. Open Biol. 2015, 5, 150014. [Google Scholar] [CrossRef] [PubMed]
- Hummel, M.; Talsma, E.F.; Taleon, V.; Londono, L.; Brychkova, G.; Gallego, S.; Raatz, B.; Spillane, C. Iron, zinc and phytic acid retention of biofortified, low phytic acid, and conventional bean varieties when preparing common household recipes. Nutrients 2020, 12, 658. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, N.; Takemoto, Y.; Miyaji, T.; Mitani-Ueno, N.; Yoshida, K.T.; Ma, J.F. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 2017, 541, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Lei, G.J.; Yamaji, N.; Yokosho, K.; Mitani-Ueno, N.; Huang, S.; Ma, J.F. Vascular cambium-localized atspdt mediates xylem-to-phloem transfer of phosphorus for its preferential distribution in Arabidopsis. Mol. Plant 2020, 13, 99–111. [Google Scholar] [CrossRef]
- Buerkert, A.; Haake, C.; Ruckwied, M.; Marschner, H. Phosphorus application affects the nutritional quality of millet grain in the Sahel. Field Crops Res. 1998, 57, 223–235. [Google Scholar] [CrossRef]
- Coelho, C.M.M.; Santos, J.C.P.; Tsai, S.M.; Vitorello, V.A. Seed phytate content and phosphorus uptake and distribution in dry bean genotypes. Braz. J. Plant Physiol. 2002, 14, 51–58. [Google Scholar] [CrossRef]
- Saneoka, H.; Koba, T. Plant growth and phytic acid accumulation in grain as affected by phosphorus application in maize (Zea mays L.). Grassl. Sci. 2003, 48, 485–489. [Google Scholar]
- Perera, I.; Fukushima, A.; Akabane, T.; Horiguchi, G.; Seneweera, S.; Hirotsu, N. Expression regulation of myo-inositol 3-phosphate synthase 1 (INO1) in determination of phytic acid accumulation in rice grain. Sci. Rep. 2019, 9, 14866. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.K.; Doyon, Y.; Miller, J.C.; DeKelver, R.C.; Moehle, E.A.; Worden, S.E.; Mitchell, J.C.; Arnold, N.L.; Gopalan, S.; Meng, X.; et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 2009, 459, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Vlcko, T.; Ohnoutkova, L. Allelic Variants of CRISPR/Cas9 induced mutation in an inositol trisphosphate 5/6 kinase gene manifest different phenotypes in barley. Plants 2020, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-I.; Tai, T. Identification of novel rice low phytic acid mutations via TILLING by sequencing. Mol. Breed. 2014, 34, 1717–1729. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cominelli, E.; Pilu, R.; Sparvoli, F. Phytic Acid and Mineral Biofortification Strategies: From Plant Science to Breeding and Biotechnological Approaches. Plants 2020, 9, 553. https://doi.org/10.3390/plants9050553
Cominelli E, Pilu R, Sparvoli F. Phytic Acid and Mineral Biofortification Strategies: From Plant Science to Breeding and Biotechnological Approaches. Plants. 2020; 9(5):553. https://doi.org/10.3390/plants9050553
Chicago/Turabian StyleCominelli, Eleonora, Roberto Pilu, and Francesca Sparvoli. 2020. "Phytic Acid and Mineral Biofortification Strategies: From Plant Science to Breeding and Biotechnological Approaches" Plants 9, no. 5: 553. https://doi.org/10.3390/plants9050553
APA StyleCominelli, E., Pilu, R., & Sparvoli, F. (2020). Phytic Acid and Mineral Biofortification Strategies: From Plant Science to Breeding and Biotechnological Approaches. Plants, 9(5), 553. https://doi.org/10.3390/plants9050553