Using Light Quality for Growth Control of Cucumber Seedlings in Closed-Type Plant Production System
Abstract
:1. Introduction
2. Materials and Method
2.1. Plant Materials and Growth Conditions
2.2. Light Qualtiy Treatments
2.3. Measurements of Growth Characteristics
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qian, M.; Rosenqvist, E.; Flygare, A.M.; Kalbina, I.; Teng, Y.; Jansen, M.A.-K.; Strid, Å. UV-A light induces a robust and dwarfed phenotype in cucumber plants (Cucumis sativus L.) without affecting fruit yield. Sci. Hortic. 2020, 263, 109110. [Google Scholar] [CrossRef]
- Bergstrand, K.J. Methods for growth regulation of greenhouse produced ornamental pot- and bedding plants—A current review. Folia. Hort. 2017, 29, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Jeong, B.R.; Hwang, S.J.; Kang, N.J. Plug Seedling; GS Press: Jinju, Korea, 2016; pp. 67–71. [Google Scholar]
- Börnke, F.; Rocksch, T. Thigmomorphogenesis—Control of plant growth by mechanical stimulation. Sci. Hortic. 2018, 234, 344–353. [Google Scholar] [CrossRef]
- Myster, J.; Moe, J. Effect of diurnal temperature alternations on plant morphology in some greenhouse crops—A mini review. Sci. Hortic. 1995, 62, 205–215. [Google Scholar] [CrossRef]
- Sánchez-Blanco, M.J.; Ortuño, M.F.; Bañon, S.; Álvarez, S. Deficit irrigation as a strategy to control growth in ornamental plants and enhance their ability to adapt to drought conditions. J. Hort. Sci. Biotechnol. 2019, 94, 137–150. [Google Scholar] [CrossRef]
- Hernández, R.; Kubota, C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 2016, 121, 66–74. [Google Scholar] [CrossRef]
- Nanya, K.; Ishigami, Y.; Hikosaka, S.; Goto, E. Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic. 2012, 956, 264–266. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chang, T.T.; Guo, S.R.; Xu, Z.G.; Li, J. Effect of diferent light quality of LED on growth and photosynthetic cheracter in cherry tomato seedling. Acta Hortic. 2011, 907, 325–330. [Google Scholar] [CrossRef]
- Wollaeger, H.M.; Runkle, E.S. Growth responses of ornamental annual seedlings under different wavelengths of red light provided by light-emitting diodes. Hort. Sci. 2013, 48, 1478–1483. [Google Scholar] [CrossRef] [Green Version]
- Hernández, R.; Kubota, C. Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. Sci. Hortic. 2014, 27, 92–99. [Google Scholar] [CrossRef]
- Robson, T.M.; Klem, K.; Urban, O.; Jansen, M.A. Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ. 2015, 38, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Demotes-Mainard, S.; Peron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Travier, S.; Crespel, L.; Morel, P.; Huche-Thelier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights: Applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Savvides, A.; Fanourakis, D.; van Ieperen, W. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. J. Exp. Botany. 2012, 63, 1135–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; van Iperen, W.; Harbinson, J. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Krizek, D.T.; Mirecki, R.M.; Kramer, G.F. Inhibitory effects of ambient level of solar UV-A and UV-B radiation on growth of cucumber. Physiol. Plant. 1997, 100, 886–893. [Google Scholar] [CrossRef]
- Yamasaki, S.; Shigeto, H.; Ashihara, Y.; Noguch, N. Continous long-term UV-B irradiation reduces division and expansion of epidermal cells in true leaves but accelerates developmental stages such as true leaf unfolding and male flower bud production in cucumber (Cucumis sativus L.) seedlings. Environ. Control Biol. 2014, 52, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Shibuya, T.; Endo, R.; Kitamura, Y.; Kitaya, Y.; Hayashi, N. Potential photosynthetic advantages of cucumber (Cucumis sativus L.) seedlings grown under fluorescent lamp with high red:far-red light. HortScience 2020, 45, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Rajapakse, N.; Li, S. Exclusion of far red light by photoselective greenhouse films reduces height of vegetable seedlings. Acta Hortic. 2004, 631, 193–199. [Google Scholar] [CrossRef]
- Grime, J.P. Plant Strategies and Vegetation Processes; John Wiley & Sons: Toronto, ON, Canada, 1979. [Google Scholar]
- Page, E.R.; Tollenaar, M.; Lee, E.A.; Lukens, L.; Swanton, C.J. Shade avoidance: An integral component of crop-weed competition. Weed. Res. 2010, 50, 281–288. [Google Scholar] [CrossRef]
- Kim, H.N.; Hwang, S.J. The growth and development of ‘Mini Chal’ tomato plug seedlings grown under various wavelengths using light emitting diodes. Agronomy 2019, 9, 157. [Google Scholar] [CrossRef] [Green Version]
- Kitaya, Y.; Niu, G.; Kozai, T.; Ohashi, M. Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants. HortScience 1998, 33, 988–991. [Google Scholar] [CrossRef] [Green Version]
- Brazaitytė, A.; Duchovskis, P.; Urbonavičiūtė, A.; Samuolienė, G.; Jankauskienė, J.; Kasiulevičiūtė-Bonakėrė, A.; Bliznikas, Z.; Novičkovas, A.; Breivě, K.; Žukauskas, A. The effect of light-emitting diodes lighting on cucumber transplants and after-effect on yield. Zemdirb.-Agric. 2009, 96, 102–118. [Google Scholar]
- Stutte, G.W.; Edney, S.; Skerritt, T. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 2009, 44, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Kataria, S.; Guruprasad, K.N. Intraspecific variations in growth, yield and photosynthesis of sorghum varieties to ambient UV (280–400 nm) radiation. Plant Sci. 2012, 196, 85–92. [Google Scholar]
- Zhang, L.; Allen, L.H.; Vaughan, M.M.; Hauser, B.A.; Boote, K.J. Solar ultraviolet radiation exclusion increases soybean internode lengths and plant height. Agric. For. Meteorol. 2014, 184, 170–178. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, S.Y.; Oh, M.M. Growth and cell division of lettuce plants under various ratios of red to far-red light emitting diodes. Hort. Environ. Biotechnol. 2015, 56, 186–794. [Google Scholar] [CrossRef]
- Victório, C.P.; Leal-Costa, M.V.; Schwartz Tavares, E.; Machado Kuster, R.; Salgueiro Lage, C.L. Effects of supplemental UV-A on the development, anatomy and metabolite production of Phyllanthus tenellus cultured in vitro. Photochem. Photobiol. 2011, 87, 685–689. [Google Scholar] [CrossRef]
- Tsukaya, H. Leaf shape: Genetic controls and environmental factors. Int. J. Dev. Biol. 2004, 49, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Pushnik, J.C.; Miller, G.W.; Jolley, V.D.; Brown, J.C.; Davis, T.D.; Barnes, A.M. Influences of ultra-violet (UV)-blue light radiation on the growth of cotton. II. Photosynthesis, leaf anatomy, and iron reduction. J. Plant Nut. 1987, 10, 2283–2297. [Google Scholar] [CrossRef]
- Barreiro, R.; Guiamét, J.J.; Beltrano, J.; Montaldi, E.R. Regulation of the photosynthetic capacity of primary bean leaves by the red:far-red ratio and photosynthetic photon flux density of incident light. Physiol. Plant 1992, 85, 97–101. [Google Scholar] [CrossRef]
- Yeoung, Y.R.; Yoon, C.S.; Kim, B.S. Influence of fungicide diniconazole in Chinese cabbage on leaf morphology and chlorophyll concentration. J. Korean Soc. Hort. Sci. 2005, 46, 13–17. [Google Scholar]
- Son, K.H.; Oh, M.M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 2013, 48, 988–995. [Google Scholar] [CrossRef]
- Son, K.H.; Kim, E.Y.; Oh, M.M. Growth and development of cherry tomato seedlings grown under various combined ratios of red to blue LED lights and fruit yield and quality after transplanting. Protected Hort. Plant Fac. 2018, 27, 54–63. [Google Scholar] [CrossRef]
- Whitelam, G.C.; Halliday, K.J. Light and Plant Development; Blackwell Publishing Ltd.: Oxford, UK, 2017. [Google Scholar]
- Usami, T.; Mochizuki, N.; Kondo, M.; Nishimura, M.; Nagatani, A. Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Plant Cell Physiol. 2004, 45, 1798–1808. [Google Scholar] [CrossRef]
Chemical | Concentration (mg·L−1) | Chemical | Concentration (mg·L−1) |
---|---|---|---|
Ca(NO3)2·4H2O | 531.00 | Fe-EDTA | 6.29 |
KNO3 | 656.50 | H3BO3 | 0.16 |
KH2PO4 | 170.00 | CuSO4·5H2O | 0.02 |
MgSO4·7H2O | 184.50 | MnSO4·5H2O | 0.22 |
NH4NO3 | 8.00 | H2MoO4·2H2O | 0.01 |
K2SO4 | 3.50 | ZnSO4·7H2O | 1.45 |
Treatment | PPFD (μmol·m−2·s−1) | ||||
---|---|---|---|---|---|
300–399 nm | 400–499 nm | 500–599 nm | 600–699 nm | 700–799 nm | |
FL | 5.4 | 70.2 | 82.2 | 42.1 | 3.1 |
R100 | 0.4 | 0.2 | 0.2 | 199.2 | 0.7 |
B100 | 0.4 | 198.5 | 1.1 | 0.0 | 0.0 |
R5B5 | 0.4 | 100.0 | 0.8 | 98.8 | 0.1 |
R3B7 | 0.6 | 138.0 | 0.9 | 60.3 | 0.1 |
R5B5 + UV 0.2 | 0.4 | 100.0 | 0.8 | 98.8 | 0.1 |
R5B5 + UV 0.4 | 0.4 | 100.0 | 0.8 | 98.8 | 0.1 |
R5B5 + UV 0.6 | 0.4 | 100.0 | 0.8 | 98.8 | 0.1 |
R3B7 + UV 0.2 | 0.6 | 138.0 | 0.9 | 60.3 | 0.1 |
R3B7 + UV 0.4 | 0.6 | 138.0 | 0.9 | 60.3 | 0.1 |
R3B7 + UV 0.6 | 0.6 | 138.0 | 0.9 | 60.3 | 0.1 |
R5B5Fr1 | 0.4 | 69.5 | 0.8 | 64.9 | 66.1 |
R5B5Fr2 | 0.4 | 84.9 | 0.6 | 82.4 | 41.1 |
R5B5Fr3 | 0.4 | 82.2 | 0.6 | 83.7 | 27.9 |
R3B7Fr1 | 0.4 | 105.5 | 0.6 | 46.6 | 47.6 |
R3B7Fr2 | 0.4 | 120.6 | 0.7 | 52.4 | 26.1 |
R3B7Fr3 | 0.4 | 124.0 | 0.7 | 49.8 | 24.9 |
Treatment | Fresh Weight (g/plant) | Dry Weight (g/plant) | ||||
---|---|---|---|---|---|---|
Leaf | Stem | Total | Leaf | Stem | Total | |
FL | 1.44 gh z | 2.49 g | 3.93 f | 0.058 g | 0.109 g | 0.167 j |
Dini | 1.02 h | 1.45 h | 2.47 g | 0.075 fg | 0.184 f | 0.259 i |
R | 1.44 gh | 3.37 ef | 4.81 f | 0.052 g | 0.272 e | 0.324 hi |
B | 3.10 f | 3.22 fg | 6.32 e | 0.121 e | 0.274 e | 0.394 gh |
R5B5 | 2.20 g | 5.87 a | 8.07 d | 0.109 ef | 0.506 a | 0.616 bcd |
R3B7 | 2.04 g | 4.30 d | 6.34 e | 0.112 ef | 0.370 d | 0.482 fg |
R5B5 + UV 0.2 | 2.12 g | 5.28 abc | 7.40 de | 0.099 ef | 0.479 ab | 0.578 cde |
R5B5 + UV 0.4 | 2.01 g | 5.48 ab | 7.49 de | 0.083 efg | 0.461 abc | 0.545 def |
R5B5 + UV 0.6 | 1.96 g | 5.05 a-d | 7.01 de | 0.086 efg | 0.426 bcd | 0.513 ef |
R3B7 + UV 0.2 | 1.99 g | 4.82 bcd | 6.84 de | 0.086 efg | 0.401 bcd | 0.486 efg |
R3B7 + UV 0.4 | 1.89 g | 5.14 a-d | 7.04 de | 0.081 fg | 0.397 cd | 0.478 fg |
R3B7 + UV 0.6 | 1.95 g | 4.89 bcd | 6.80 de | 0.084 efg | 0.393 cd | 0.477 fg |
R5B5Fr1 | 9.91 a | 4.67 bcd | 14.57 a | 0.287 bc | 0.369 d | 0.656 bc |
R5B5Fr2 | 8.99 b | 4.69 bcd | 13.68 ab | 0.279 cd | 0.367 d | 0.646 bc |
R5B5Fr3 | 6.67 e | 4.67 bcd | 11.54 c | 0.299 bc | 0.391 cd | 0.691 ab |
R3B7Fr1 | 8.46 bc | 4.18 de | 12.64 bc | 0.320 ab | 0.342 de | 0.662 bc |
R3B7Fr2 | 7.47 d | 4.44 cd | 11.91 c | 0.249 d | 0.370 d | 0.619 bcd |
R3B7Fr3 | 8.06 cd | 4.90 bcd | 12.96 bc | 0.347 a | 0.422 bcd | 0.769 a |
Significance | *** | *** | *** | *** | *** | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.W.; Lee, H.R.; Kim, H.M.; Kim, H.M.; Hwang, H.S.; Hwang, S.J. Using Light Quality for Growth Control of Cucumber Seedlings in Closed-Type Plant Production System. Plants 2020, 9, 639. https://doi.org/10.3390/plants9050639
Jeong HW, Lee HR, Kim HM, Kim HM, Hwang HS, Hwang SJ. Using Light Quality for Growth Control of Cucumber Seedlings in Closed-Type Plant Production System. Plants. 2020; 9(5):639. https://doi.org/10.3390/plants9050639
Chicago/Turabian StyleJeong, Hyeon Woo, Hye Ri Lee, Hyeon Min Kim, Hye Min Kim, Hee Sung Hwang, and Seung Jae Hwang. 2020. "Using Light Quality for Growth Control of Cucumber Seedlings in Closed-Type Plant Production System" Plants 9, no. 5: 639. https://doi.org/10.3390/plants9050639