Phytochemistry, Toxicology and Therapeutic Value of Petasites hybridus Subsp. Ochroleucus (Common Butterbur) from the Balkans
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Essential-Oil Extraction and Chemical Analyses
4.3. Antioxidant Activity of the Essential Oils
4.4. Antimicrobial Activity of the Essential Oils
4.5. Determination of the Skin Irritation Potential of the Essential Oils
4.6. Acute Toxicity
4.7. Anti-Cholinesterase Activity
4.8. Anti-Inflammatory Activity: Carrageenan-Induced Paw Edema
4.9. Drosophila Toxicity Tests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dingwall, I. Petasites Miller. In Flora Europaea, 4th ed.; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; University Press: Cambridge, UK, 1976; pp. 186–188. [Google Scholar]
- Meusel, H.; Jäger, E.; Weinert, E. Vergleichende Chorologie der Zentraleuropäischen Flora «2»; Karten: Gustav Fischer, Jena, 1978. [Google Scholar]
- Aydın, A.A.; Zerbes, V.; Parlar, H.; Letzel, T. The medical plant butterbur (Petasites): Analytical and physiological (re)view. J. Pharm. Biomed. Anal. 2013, 75, 220–229. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. Chemical Information Review Document for Butterbur (Petasites hybridus, ext.) [CAS No. 90082-63-6]; Supporting Nomination for Toxicological Evaluation by the National Toxicology Program; U.S. Department of Health and Human Services Research: Triangle Park, NC, USA, 2009.
- Asenov, I.; Gusev, C.; Kitanov, G.; Nikolov, S.; Petkov, T. Bilkosabiranie—Rakovodstvo za Brane i Parvična Prerabotka na Lečebni Rastenia; Biler: Sofia, Bulgaria, 1998. [Google Scholar]
- Danesch, U. Petasites hybridus (Butterbur root) extract in the treatment of asthma-an open trial. Altern. Med. Rev. 2004, 9, 54–62. [Google Scholar] [PubMed]
- Sutherland, A.; Sweet, B.V. Butterbur: An alternative therapy for migraine prevention. Am. J. Health Syst. Pharm 2010, 67, 705. [Google Scholar] [CrossRef]
- Thomet, O.A.R.; Schapowal, A.; Heinisch, I.V.W.M.; Wiesmann, U.N.; Simon, H.-U. Anti-inflammatory activity of an extract of Petasites hybridus in allergic rhinitis. Int. Immunopharmacol. 2002, 2, 997–1006. [Google Scholar] [CrossRef]
- Arkko, P.J.; Arkko, B.L.; Kari-Koshinen, O.; Taskinen, P.J. A survey of unproven cancer remedies and their users in an outpatient clinic for cancer therapy in Finland. Soc. Sci. Med. 1980, 14, 511–514. [Google Scholar]
- Hirono, I.; Mori, H.; Yamada, K.; Hirata, Y.; Haga, M.; Tatematsu, H.; Kanie, S. Carcinogenic activity of petasitenine, a new pyrrolizidine alkaloid isolated from Petasites japonicus Maxim. J. Natl. Cancer Inst. 1977, 58, 1155–1157. [Google Scholar] [CrossRef]
- Tasić, S.; Šavikin-Fodulović, K.; Menković, N. A Guide to the World of Medicinal Plants; Agency Valjevac: Valjevo, Serbia, 2004. [Google Scholar]
- Menković, N.; Šavikin, K.; Tasić, S.; Zdunić, G.; Stešević, D.; Milosavljević, S.; Vincek, D. Ethnobotanical study on traditional uses of wild medicinal plants in Prokletije Mountains (Montenegro). J. Ethnopharmacol. 2011, 133, 97–107. [Google Scholar] [CrossRef]
- Redžić, S.S. The ecological aspect of ethnobotany and ethnopharmacology of population in Bosnia and Herzegovina. Coll. Antropol. 2007, 31, 869–890. [Google Scholar]
- Šarić-Kundalić, B.; Dobeš, C.; Klatte-Asselmeyer, V.; Saukel, J. Ethnobotanical study on medicinal use of wild and cultivated plants in middle, south and west Bosnia and Herzegovina. J. Ethnopharmacol. 2010, 131, 33–55. [Google Scholar] [CrossRef]
- Tasić, S. Ethnobotany in SEE-WB countries; traditional uses of indigenous plants. Lek. Sirovine 2012, 32, 71–81. [Google Scholar]
- Zlatković, B. Carlina corymbosa L., Petasites hybridus subsp. ochroleucus (Boiss. & A. Huet) Šourek. In Euro+Med Notulae: 2: 709, 713—Willdenowia; Greuter, W., Raab-Straube, E., Eds.; BGBM: Berlin, Germany, 2006; Volume 36, pp. 707–717. [Google Scholar]
- Chizzola, R.; Ozelsberger, B.; Langer, T. Variability in chemical constituents in Petasites hybridus from Austria. Biochem. Syst. Ecol. 2000, 28, 421–432. [Google Scholar] [CrossRef]
- Petrović, S. Medicinal Herbs in Serbia, Serbian Archives for All Medicine, 1st ed.; Section 2, Book 16; Royal Serbian State Printing Office: Belgrade, Serbia, 1883. [Google Scholar]
- Wildi, E.; Langer, T.; Schaffner, W.; Büter, K.B. Quantitative analysis of petasin and pyrrolizidine alkaloids in leaves and rhizomes of in situ grown Petasites hybridus plants. Planta Med. 1998, 64, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Stelljes, M.E.; Kelley, R.B.; Molyneux, R.J.; Seiber, J.N. Gc-ms determination of pyrrolizidine alkaloids in four Senecio species. J. Nat. Prod. 1991, 54, 759–773. [Google Scholar] [CrossRef]
- Paré, P.W.; Tumlinson, J.H. Plant volatiles as a defense against insect herbivores. Plant Physiol. 1999, 121, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling Chang, C.; Kyu Cho, I.; Li, Q.X. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J. Econ. Entomol. 2009, 102, 203. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.C.; Junnila, A.; Butler, J.; Kravchenko, V.D.; Revay, E.E.; Weiss, R.W.; Schlein, Y. Efficacy of the botanical repellents geraniol, linalool, and citronella against mosquitoes. J. Vector Ecol. 2009, 34, 2–8. [Google Scholar] [CrossRef]
- Thomet, O.A.R.; Wiesmann, U.N.; Schapowal, A.; Bizer, C.; Simon, H.U. Role of petasin in the potential anti-inflammatory activity of a plant extract of Petasites hybridus. Biochem. Pharmacol. 2001, 61, 1041–1047. [Google Scholar] [CrossRef]
- Zhang, F.J.; Wang, Q.; Wang, Y.; Guo, M.L. Anti-allergic effects of total bakkenolides from Petasites tricholobus in ovalbumin-sensitized rats. Phytother. Res. 2011, 25, 116–121. [Google Scholar] [CrossRef]
- Mohammadi, M.; Yousefi, M.; Habibi, Z.; Dastan, D. Chemical composition and antioxidant activity of the essential oil of aerial parts of Petasites albus from Iran: A good natural source of euparin. Nat. Prod. Res. 2012, 26, 291–297. [Google Scholar] [CrossRef]
- Sun, Z.L.; Gao, G.L.; Luo, J.Y.; Zhang, X.L.; Zhang, M.; Feng, J. A new neuroprotective bakkenolide from the rhizome of Peatasites tatewakianus. Fitoterapia 2011, 82, 401–404. [Google Scholar] [CrossRef]
- Watanabe, S.; Hashimoto, K.; Tazaki, H.; Iwamoto, Y.; Shinohara, N.; Satoh, K.; Sakagami, H. Radical scavenging activity and inhibition of macrophage NO production by fukinolic acid, a main phenolic constituent in Japanese butterbur Petasites japonicus. Food Sci. Technol. Res. 2007, 13, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Guo, M.L.; Zhang, G.; Li, R.P. A new neuroprotective bakkenolide from the rhizome of Petasites tricholobus. Chin. Chem. Lett. 2008, 19, 841–844. [Google Scholar] [CrossRef]
- Mihajilov-Krstev, T.; Jovanović, B.; Jović, J.; Ilić, B.; Miladinović, D.; Matejić, J.; Rajković, J.; Đorđević, L.; Cvetković, V.; Zlatković, B. Antimicrobial, antioxidative, and insect repellent effects of Artemisia absinthium essential oil. Planta Med. 2014, 80, 1698–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.; Liang, Y.; Yi, L.; Li, H.; Zhou, Z.; Ji, X.; Deng, J. Identification of free fatty acids profiling of type 2 diabetes mellitus and exploring possible biomarkers by GC–MS coupled with chemometrics. Metabolomics 2010, 6, 219–228. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard—9th ed.; CLSI Document M07-A9, 3(2); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Sartoratto, A.; Machado, A.L.M.; Delarmelina, C.; Figueira, G.M.; Duarte, M.C.T.; Rehder, V.L.G. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Basketter, D.A.; Chamberlain, M.; Griffiths, H.A.; Rowson, M.; Whittle, E.; York, M. The classification of skin irritants by human patch test. Food Chem. Toxicol. 1997, 35, 845–852. [Google Scholar] [CrossRef]
- Stankov-Jovanovic, V.P.; Nikolic-Mandic, S.D.; Mandic, L.M.; Mitic, V.D. A modification of the kinetic determination of pancuronium bromide based on its inhibitory effect on cholinesterase. J. Clin. Lab. Anal. 2007, 21, 124–131. [Google Scholar] [CrossRef]
- Amdekar, S.; Roy, P.; Singh, V.; Kumar, A.; Singh, R.; Sharma, P. Anti-inflammatory activity of Lactobacillus on carrageenan induced paw edema in male Wistar rats. Int. J. Inflamm. 2012, 75, 2015. [Google Scholar]
- Bernstein, N.; Akram, M.; Daniyal, M.; Koltai, H.; Fridlender, M.; Gorelick, J. Anti-inflammatory potential of medicinal plants: A source for therapeutic secondary metabolites. Adv. Agron. 2018, 150, 131–183. [Google Scholar]
Component | RT a (min) | KIL b | KIE c | Leaves (%) | Rhizome (%) | |
---|---|---|---|---|---|---|
1. | 1-Octene | 4.458 | 788 | 788.9 | – | 0.84 |
2. | 1-Nonene | 7.068 | 887 | 890.7 | 1.92 | 8.57 |
3. | (3E)-Hepten-2-one | 8.17 | 927 | 925.3 | – | 0.4 |
4. | Myrcene | 10.289 | 988 | 988.1 | 0.1 | 0.1 |
5. | 1-Decene | 10.368 | 986 | 990.4 | – | 0.15 |
6. | α-Phellandrene | 10.908 | 1002 | 1005.9 | 2.46 | 2.9 |
7. | o-Cymene | 11.561 | 1022 | 1024.1 | 1.48 | 1.47 |
8. | (E)-β-Ocimene | 12.334 | 1044 | 1045.3 | 0.09 | – |
9. | Fenchone | 13.637 | 1083 | 1081.2 | – | 0.34 |
10. | Linalool | 14.108 | 1095 | 1094.2 | 9.03 | 0.77 |
11. | n-Nonanal | 14.481 | 1100 | 1104.4 | 0.08 | – |
12. | p-Menth-3-en-8-ol | 16.166 | 1145 | 1151.1 | – | 0.51 |
13. | (2E)-Nonen-1-al | 16.448 | 1157 | 1159 | 0.62 | 11.23 |
14. | Thymol methyl ether | 18.917 | 1232 | 1228.4 | 0.2 | 0.1 |
15. | 1-Octen-3-ol-butanoate | 20.634 | 1280 | 1277.9 | – | 0.63 |
16. | Methyl decanoate | 22.218 | 1323 | 1324.7 | – | 0.21 |
17. | α-Cubebene | 22.933 | 1345 | 1346.2 | – | 0.23 |
18. | α-Longipinene | 23.063 | 1350 | 1350.1 | – | 0.57 |
19. | α-Copaene | 23.91 | 1374 | 1375.7 | 1.27 | 0.76 |
20. | β-Bourbonene | 24.166 | 1387 | 1383.4 | 0.79 | 1.65 |
21. | β-Cubebene | 24.31 | 1387 | 1387.7 | 1.39 | 3.13 |
22. | β-Elemene | 24.36 | 1389 | 1389.2 | 1.06 | – |
23. | Cyperene | 24.63 | 1398 | 1397.5 | – | 1.08 |
24. | α-cis-Bergamotene | 25.078 | 1411 | 1411.5 | – | 0.71 |
25. | α-Santalene | 25.313 | 1416 | 1419 | 0.66 | 3.36 |
26. | α-trans-Bergamotene | 25.726 | 1432 | 1432.2 | 0.15 | 1.46 |
27. | Aromadendrene | 26.094 | 1439 | 1443.9 | 0.18 | 0.18 |
28. | epi-β-Santalene | 26.184 | 1445 | 1446.7 | 0.27 | 3.45 |
29. | α-Himachalene | 26.248 | 1449 | 1448.8 | 0.28 | – |
30. | (E)-β-Farnesene | 26.373 | 1454 | 1452.8 | 0.26 | 1.34 |
31. | α-Humulene | 26.456 | 1452 | 1455.4 | 0.49 | 1.68 |
32. | β-Santalene | 26.58 | 1457 | 1459.4 | – | 0.72 |
33. | 4,5-di-epi-Aristolochene | 26.904 | 1471 | 1469.7 | 0.48 | 0.28 |
34. | Germacrene D | 27.303 | 1484 | 1482.5 | 4.26 | 5.01 |
35. | Eremophilene | 27.517 | 1486 | 1489.3 | 4.31 | 2.35 |
36. | epi-Cubebol | 27.63 | 1493 | 1492.8 | 0.9 | 0.44 |
37. | Valencene | 27.706 | 1496 | 1495.2 | 0.26 | – |
38. | α-Muurolene | 27.788 | 1500 | 1497.9 | 0.78 | – |
39. | β-Bisabolene | 28.099 | 1505 | 1508.2 | – | 1.61 |
40. | (Z)-α-Bisabolene | 28.178 | 1506 | 1510.9 | – | 0.42 |
41. | δ-Cadinene | 28.395 | 1522 | 1518.2 | 1.26 | – |
42. | trans-Calamenene | 28.492 | 1521 | 1521.4 | 0.37 | 0.35 |
43. | α-Cadinene | 29.046 | 1537 | 1540.1 | – | 0.91 |
44. | α-Calacorene | 29.217 | 1544 | 1545.8 | – | 0.21 |
45. | Spathulenol | 30.115 | 1577 | 1576.1 | 0.33 | – |
46. | β-Copaen-4α-ol | 30.522 | 1590 | 1589.3 | 0.37 | – |
47. | Salvial-4(14)-en-1-one | 30.65 | 1594 | 1594.1 | 0.18 | 0.51 |
48. | β-Atlantol | 31.101 | 1608 | 1609.8 | 1.41 | 0.3 |
49. | γ-Eudesmol | 31.719 | 1630 | 1631.8 | – | 0.6 |
50. | Cubenol | 32.117 | 1645 | 1645.8 | – | 1.25 |
51. | α-Eudesmol | 32.328 | 1652 | 1653.3 | – | 4.52 |
52. | α-Cadinol | 32.4 | 1652 | 1655.3 | – | 0.37 |
53. | Dihydro eudesmol | 32.493 | 1661 | 1659.1 | – | 0.8 |
54. | 7-epi-α-Eudesmol | 32.552 | 1662 | 1661.2 | 16.14 | 0.69 |
55. | (E)-Bisabol-11-ol | 32.645 | 1667 | 1664.5 | 0.73 | 0.46 |
56. | β-Atlantone | 32.765 | 1668 | 1668.7 | – | 0.27 |
57. | β-Bisabolol | 32.878 | 1674 | 1672.8 | – | 2.53 |
58. | (Z)-β-Santalol | 34.034 | 1715 | 1714.5 | 0.81 | 0.67 |
59. | α-Bisabolol oxide | 35.023 | 1748 | 1751.5 | – | 3.38 |
60. | α-Sinensal | 35.111 | 1755 | 1754.8 | – | 1.17 |
61. | Isopetasin | 36.49 | 1805 | 1806.6 | – | 3.93 |
62. | Fukinanolide | 36.949 | 1824 | 1824.5 | 33.42 | – |
63. | n-Hexadecanol | 38.327 | 1874 | 1878.2 | 0.17 | – |
64. | Palmitic acid | 40.532 | 1959 | 1967.7 | – | 1.98 |
65. | n-Heneicosane | 43.801 | 2100 | 2106.4 | 0.22 | – |
66. | Linoleic acid | 44.301 | 2132 | 2129.7 | – | 2.14 |
67. | Oleic acid | 44.691 | 2141 | 2147 | – | 2.62 |
68. | Larixol | 47.191 | 2265 | 2260.2 | – | 0.25 |
69. | Sempervirol | 47.708 | 2282 | 2284 | – | 0.54 |
70. | 4-epi-Abietol | 49.06 | 2343 | 2348.8 | 0.49 | 0.64 |
71. | Dehydro abietol | 49.447 | 2368 | 2367.7 | 0.29 | – |
72. | cis-Ferruginol acetate | 50.288 | 2411 | 2408.9 | 4.25 | 2.88 |
73. | 6-keto-Ferruginol | 51.216 | 2456 | 2455.6 | 0.41 | 0.35 |
Total | 94.62 | 92.97 |
Sample | DPPH IC50 (mg/mL) | ABTS mg VitC/g |
---|---|---|
Essential oil from rhizomes | 154.229 ± 0.008 | 0.082 ± 0.003 |
Essential oil from leaves | 79.899 ± 0.066 | 1.255 ± 0.043 |
BHA (0.10 mg/mL) | 0.093 ± 0.000 | 2.660 ± 0.005 |
Vitamin C (0.10 mg/mL) | 0.054 ± 0.001 | ND |
Sample | % Inhibition/Activation |
---|---|
Essential oil from rhizomes | −33.24 |
Essential oil from leaves | −26.37 |
Neostigmin bromide | −96.60 |
Groups | Hours | ||||
---|---|---|---|---|---|
1 h | 2 h | 4 h | 6 h | ||
Control (saline) | Edema thickness (mm) | 2.56 ± 0.84 | 2.62 ± 0.61 | 1.99 ± 0.22 | 2.49 ± 0.366 |
Anti-inflammatory activity (%) | / | / | / | / | |
Indomethacin (10 mg/kg) | Edema thickness (mm) | 1.30 ± 0.32 b | 1.45 ± 0.36 b | 0.92 ± 0.55 b | 1.15 ± 0.183 b |
Anti-inflammatory activity (%) | 49.22% | 44.65% | 53.76% | 53.81% | |
Control (DMSO) | Edema thickness (mm) | 2.21 ± 0.80 | 2.05 ± 0.7 | 1.98 ± 0.49 | 2.08 ± 0.42 |
Anti-inflammatory activity (%) | / | / | / | / | |
Rhizome 10% | Edema thickness (mm) | 1.10 ± 0.48 a | 1.19 ± 0.68 | 1.07 ± 0.54 a | 1.19 ± 0.45 a |
Anti-inflammatory activity (%) | 50.22% | 41.95% | 45.95% | 42.7% | |
Rhizome 20% | Edema thickness (mm) | 1.53 ± 0.04 | 1.34 ± 0.39 | 1.06 ± 0.34 a | 1.16 ± 0.26 a |
Anti-inflammatory activity (%) | 30.7% | 34.63% | 46.46% | 44.24% | |
Rhizome 40% | Edema thickness (mm) | 1.79 ± 0.66 | 1.31 ± 0.74 | 1.64 ± 0.48 | 1.76 ± 0.41 |
Anti-inflammatory activity (%) | 19% | 36.09% | 17.17% | 15.22% | |
Leaf 10% | Edema thickness (mm) | 2.03 ± 0.77 | 1.51 ± 0.34 | 1.57 ± 0.47 | 1.84 ± 0.43 |
Anti-inflammatory activity (%) | 8.14% | 26.34% | 20.7% | 11.53% | |
Leaf 20% | Edema thickness (mm) | 1.28 ± 0.43 | 1.24 ± 0.31 | 1.26 ± 0.56 | 1.7 ± 0.36 |
Anti-inflammatory activity (%) | 42.08% | 39.51% | 36.3% | 18.26% | |
Leaf 40% | Edema thickness (mm) | 1.09 ± 0.55 | 1.15 ± 0.35 a | 1.01 ± 0.55 a | 1.19 ± 0.57 a |
Anti-inflammatory activity (%) | 50.67% | 43.9% | 48.98% | 42.78% |
Essential Oil from Rhizomes | ||||||
---|---|---|---|---|---|---|
Estimated 48 h LC50 ± SEM for larvae in w/v %. 95% CI in brackets | 3.40 ± 0.34 (2.72–4.06) | |||||
Estimated 96 h LC50 ± SEM for larvae in w/v %. 95% CI in brackets | 3.13 ± 0.50 (2.14–4.11) | |||||
Estimated chronic toxicity threshold: LC1 (larva to adult). 95% CI in brackets. | 0.03 (N.A.−0.2) | |||||
Concentration in the feed media (w/v %) | control | 0.19% | 0.38% | 0.75% | 1.5% | 3% |
Exposed larvae reaching pupa stadium (%) | 98.3 | 90.0 | 85.0 | 85.0 | 76.7 | 41.7 |
Exposed larvae reaching imago stadium (%) | 98.3 | 90.0 | 78.3 | 83.3 | 71.7 | 35.0 |
DT larva to pupa (days) ± SEM | 2.56 ± 0.08 | 3.25 ± 0.13 | 3.50 ± 0.37 | 3.95 ± 0.34 | 5.02 ± 0.36 | 5.17 ± 0.46 |
DT larva to adult (days) ± SEM | 7.10 ± 0.03 | 7.81 ± 0.18 | 8.25 ± 0.58 | 9.16 ± 0.20 | 9.85 ± 0.21 | 10.40 ± 0.56 |
Essential Oil from Leaves | ||||||
Estimated 48 h LC50 ± SEM for larvae in w/v %. 95% CI in brackets | 0.84 ± 0.40 (0.06–1.62) | |||||
Estimated 96 LC50 ± SEM for larvae in w/v %. 95% CI in brackets | 0.80 ± 0.24 (0.32–1.27) | |||||
Estimated chronic toxicity threshold: LC1 (larva to adult). 95% CI in brackets. | 0.07 (0.04–0.10) | |||||
Concentration in feed media in w/v % | control | 0.19% | 0.38% | 0.75% | 1.5% | 3% |
Exposed larvae reaching pupa stadium (%) | 95 | 93.3 | 78.3 | 36.7 | 11.7 | 6.7 |
Exposed larvae reaching imago stadium (%) | 95 | 83.3 | 68.3 | 21.7 | 5.0 | 1.7 |
DT larva to pupa (days) ± SEM | 1.51 ± 0.03 | 2.41 ± 0.26 | 6.20 ± 0.34 | 4.79 ± 1.09 | N.A. * | N.A. * |
DT larva to adult (days) ± SEM | 6.23 ± 0.14 | 6.95 ± 0.19 | 10.57 ± 0.66 | N.A. * | N.A. * | N.A. * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihajilov-Krstev, T.; Jovanović, B.; Zlatković, B.; Matejić, J.; Vitorović, J.; Cvetković, V.; Ilić, B.; Đorđević, L.; Joković, N.; Miladinović, D.; et al. Phytochemistry, Toxicology and Therapeutic Value of Petasites hybridus Subsp. Ochroleucus (Common Butterbur) from the Balkans. Plants 2020, 9, 700. https://doi.org/10.3390/plants9060700
Mihajilov-Krstev T, Jovanović B, Zlatković B, Matejić J, Vitorović J, Cvetković V, Ilić B, Đorđević L, Joković N, Miladinović D, et al. Phytochemistry, Toxicology and Therapeutic Value of Petasites hybridus Subsp. Ochroleucus (Common Butterbur) from the Balkans. Plants. 2020; 9(6):700. https://doi.org/10.3390/plants9060700
Chicago/Turabian StyleMihajilov-Krstev, Tatjana, Boris Jovanović, Bojan Zlatković, Jelena Matejić, Jelena Vitorović, Vladimir Cvetković, Budimir Ilić, Ljubiša Đorđević, Nataša Joković, Dragoljub Miladinović, and et al. 2020. "Phytochemistry, Toxicology and Therapeutic Value of Petasites hybridus Subsp. Ochroleucus (Common Butterbur) from the Balkans" Plants 9, no. 6: 700. https://doi.org/10.3390/plants9060700
APA StyleMihajilov-Krstev, T., Jovanović, B., Zlatković, B., Matejić, J., Vitorović, J., Cvetković, V., Ilić, B., Đorđević, L., Joković, N., Miladinović, D., Jakšić, T., Stanković, N., Stankov Jovanović, V., & Bernstein, N. (2020). Phytochemistry, Toxicology and Therapeutic Value of Petasites hybridus Subsp. Ochroleucus (Common Butterbur) from the Balkans. Plants, 9(6), 700. https://doi.org/10.3390/plants9060700