Ecological Specialization and Rarity of Arable Weeds: Insights from a Comprehensive Survey in France
Abstract
:1. Introduction
2. Material and Methods
2.1. Datasets with Distinct Methodologies and Scopes
2.1.1. Reference Lists and Flora
2.1.2. Plot-Based Community Sampling
2.2. Biological, Ecological and Biogeographical Information
2.3. Statistical Analyses
3. Results
3.1. Sampling Intensity and Spatial Coverage
3.2. Weed Preferred Habitats
3.3. Weed Habitat Specialization
3.4. Biogeographic Origin
4. Discussion
4.1. Habitats of Agricultural Weeds
4.2. Agricultural Weeds Tend to Be More Generalist
4.3. Weed Assemblages at Field Margins Expand the Life Form Spectrum
4.4. Mediterranean Origins and Conservation Issues
5. Conclusions and Perspectives
Data Availability
Author Contributions
Funding
Conflicts of Interest
References
- Bourgeois, B.; Munoz, F.; Fried, G.; Mahaut, L.; Armengot, L.; Denelle, P.; Storkey, J.; Gaba, S.; Violle, C. What makes a weed a weed? A large-scale evaluation of arable weeds through a functional lens. Am. J. Bot. 2019, 106, 90–100. [Google Scholar] [CrossRef]
- Godinho, I. Les définitions d’adventice et de mauvaise herbe. Weed Res. 1984, 24, 121–125. [Google Scholar] [CrossRef]
- Zimdahl, R.L. Fundamentals of Weed Science; Academic Press: Cambridge, MA, USA, 2013; ISBN 0-12-397818-1. [Google Scholar]
- Holzner, W.; Numata, M. Biology and Ecology of Weeds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1982; Volume 2, ISBN 94-017-0916-5. [Google Scholar]
- Poggio, S.L.; Chaneton, E.J.; Ghersa, C.M. Landscape complexity differentially affects alpha, beta, and gamma diversities of plants occurring in fencerows and crop fields. Biol. Conserv. 2010, 143, 2477–2486. [Google Scholar] [CrossRef]
- Jauzein, P. La notion de messicole: Tentative de définition et de classification. Le Monde Des Plantes 1997, 458, 19–23. [Google Scholar]
- Jauzein, P. Flore des Champs Cultivés; INRA: Paris, France, 1995; ISBN 2-7380-0594-2. [Google Scholar]
- Metcalfe, H.; Hassall, K.L.; Boinot, S.; Storkey, J. The contribution of spatial mass effects to plant diversity in arable fields. J. Appl. Ecol. 2019, 56, 1560–1574. [Google Scholar] [CrossRef] [PubMed]
- Gaba, S.; Gabriel, E.; Chadœuf, J.; Bonneu, F.; Bretagnolle, V. Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci. Rep. 2016, 6, 30112. [Google Scholar] [CrossRef] [PubMed]
- Zanin, G.; Otto, S.; Riello, L.; Borin, M. Ecological interpretation of weed flora dynamics under different tillage systems. Agric. Ecosyst. Environ. 1997, 66, 177–188. [Google Scholar] [CrossRef]
- Torra, J.; Recasens, J.; Royo-Esnal, A. Seedling emergence response of rare arable plants to soil tillage varies by species. PLoS ONE 2018, 13, e0199425. [Google Scholar] [CrossRef]
- Andreasen, C.; Stryhn, H.; Streibig, J.C. Decline of the Flora in Danish Arable Fields. J. Appl. Ecol. 1996, 33, 619–626. [Google Scholar] [CrossRef]
- Storkey, J.; Meyer, S.; Still, K.S.; Leuschner, C. The impact of agricultural intensification and land-use change on the European arable flora. Proc. R. Soc. Lond. B Biol. Sci. 2011. [Google Scholar] [CrossRef]
- Cambecèdes, J.; Largier, G.; Lombard, A. Plan National d’Actions en Faveur des Plantes Messicoles 2012–2017; Conservatoire botanique national des Pyrénées et de Midi-Pyrénées; Fédération des Conservatoires botaniques nationaux—Ministère de l’Écologie, du Développement durable et de l’Énergie: Paris, France, 2012. [Google Scholar]
- Holzner, W. Weed Species and Weed Communities. Vegetatio 1978, 38, 13–20. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Henckel, L.; Börger, L.; Meiss, H.; Gaba, S.; Bretagnolle, V. Organic fields sustain weed metacommunity dynamics in farmland landscapes. Proc. R. Soc. B 2015, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poggio, S.L.; Chaneton, E.J.; Ghersa, C.M. The arable plant diversity of intensively managed farmland: Effects of field position and crop type at local and landscape scales. Agric. Ecosyst. Environ. 2013, 166, 55–64. [Google Scholar] [CrossRef]
- Petit, S.; Gaba, S.; Grison, A.-L.; Meiss, H.; Simmoneau, B.; Munier-Jolain, N.; Bretagnolle, V. Landscape scale management affects weed richness but not weed abundance in winter wheat fields. Agric. Ecosyst. Environ. 2016, 223, 41–47. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Chytrý, M.; Kropáč, Z.; Tichý, L.; Wild, J. Alien plants in temperate weed communities: Prehistoric and recent invaders occupy different habitats. Ecology 2005, 86, 772–785. [Google Scholar] [CrossRef] [Green Version]
- Potts, G.R.; Ewald, J.A.; Aebischer, N.J. Long-term changes in the flora of the cereal ecosystem on the Sussex Downs, England, focusing on the years 1968–2005. J. Appl. Ecol. 2010, 47, 215–226. [Google Scholar] [CrossRef]
- Hanzlik, K.; Gerowitt, B. Methods to conduct and analyse weed surveys in arable farming: A review. Agron. Sustain. Dev. 2016, 36, 11. [Google Scholar] [CrossRef] [Green Version]
- Violle, C.; Choler, P.; Borgy, B.; Garnier, E.; Amiaud, B.; Debarros, G.; Diquelou, S.; Gachet, S.; Joliver, C.; Kattge, J.; et al. Vegetation Ecology meets Ecosystem Science: Permanent grasslands as a functional biogeography case study. Sci. Total Environ. 2015, 534, 43–51. [Google Scholar] [CrossRef]
- Fried, G.; Norton, L.R.; Reboud, X. Environmental and management factors determining weed species composition and diversity in France. Agric. Ecosyst. Environ. 2008, 128, 68–76. [Google Scholar] [CrossRef]
- Bretagnolle, V.; Berthet, E.; Gross, N.; Gauffre, B.; Plumejeaud, C.; Houte, S.; Badenhausser, I.; Monceau, K.; Allier, F.; Monestiez, P.; et al. Towards sustainable and multifunctional agriculture in farmland landscapes: Lessons from the integrative approach of a French LTSER platform. Sci. Total Environ. 2018, 627, 822–834. [Google Scholar] [CrossRef] [PubMed]
- Tison, J.M.; De Foucault, B. Flora Gallica; Biotope: Mèze, France, 2014. [Google Scholar]
- Gargominy, O.; Tercerie, S.; Régnier, C.; Ramage, T.; Shoelinck, C.; Dupont, P.; Vandel, E.; Daskiewicz, P.; Poncet, L. TAXREF v10.0, Référentiel Taxonomique pour la France [Data set]; MNHN: Paris, France, 2016. [Google Scholar]
- Bretagnolle, V.; Berthet, E.; Gross, N.; Gauffre, B.; Plumejeaud, C.; Houte, S.; Badenhausser, I.; Monceau, K.; Allier, F.; Monestiez, P.; et al. Description of long-term monitoring of farmland biodiversity in a LTSER. Data Brief 2018, 19, 1310–1313. [Google Scholar] [CrossRef]
- Gaba, S.; Chauvel, B.; Dessaint, F.; Bretagnolle, V.; Petit, S. Weed species richness in winter wheat increases with landscape heterogeneity. Agric. Ecosyst. Environ. 2010, 138, 318–323. [Google Scholar] [CrossRef]
- Julve, P. Baseflor: Index Botanique, écologique et Chorologique de la Flore de France. [Data set]; Institut Catholique de Lille: Lille, France, 2014. [Google Scholar]
- Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography; Oxford University Press: Oxford, UK, 1934. [Google Scholar]
- UICN France; FCBN; MNHN. La Liste Rouge des espèces menacées en France - Chapitre Flore Vasculaire de France métropolitaine: Premiers résultats pour 1 000 Espèces, Sous-espèces et Variétés; ICN France: Paris, France, 2012. [Google Scholar]
- Carstensen, D.W.; Lessard, J.-P.; Holt, B.G.; Krabbe Borregaard, M.; Rahbek, C. Introducing the biogeographic species pool. Ecography 2013, 36, 1310–1318. [Google Scholar] [CrossRef] [Green Version]
- Carboni, M.; Münkemüller, T.; Lavergne, S.; Choler, P.; Borgy, B.; Violle, C.; Essl, F.; Roquet, C.; Munoz, F.; The DivGrass Consortium; et al. What it takes to invade grassland ecosystems: Traits, introduction history and filtering processes. Ecol. Lett. 2016, 19, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Denelle, P.; Violle, C.; Munoz, F. Generalist plants are more competitive and more functionally similar to each other than specialist plants: Insights from network analyses. J. Biogeogr. 2020, in press. [Google Scholar] [CrossRef]
- Guimera, R.; Amaral, L.A.N. Cartography of complex networks: Modules and universal roles. J. Stat. Mech. Theory Exp. 2005, P02001, 1–13. [Google Scholar] [CrossRef]
- Carstensen, D.W.; Dalsgaard, B.; Svenning, J.-C.; Rahbek, C.; Fjelds, J.; Sutherland, W.J.; Olesen, J.M. The functional biogeography of species: Biogeographical species roles of birds in Wallacea and the West Indies. Ecography 2013, 36, 1097–1105. [Google Scholar] [CrossRef]
- R_Core_Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Munoz, F.; Fried, G.; Armengot, L.; Bourgeois, B.; Bretagnolle, V.; Chadoeuf, J.; Mahaut, L.; Plumejeaud, C.; Storkey, J.; Violle, C.; et al. Database of Weeds in Cultivation Fields of France and UK, with Ecological and Biogeographical Information (Version 1.0.0) [Data set]; Zenodo: Genève, Switzerland, 2017. [Google Scholar] [CrossRef]
- Brun, C. Biodiversity changes in highly anthropogenic environments (cultivated and ruderal) since the Neolithic in eastern France. Holocene 2009, 19, 861–871. [Google Scholar] [CrossRef]
- Partel, M.; Szava-Kovats, R.; Zobel, M. Dark diversity: Shedding light on absent species. Trends Ecol. Evol. 2011, 26, 124–128. [Google Scholar] [CrossRef]
- Moreau, D.; Milard, G.; Munier-Jolain, N. A plant nitrophily index based on plant leaf area response to soil nitrogen availability. Agron. Sustain. Dev. 2013, 33, 809–815. [Google Scholar] [CrossRef]
- Storkey, J.; Moss, S.R.; Cussans, J.W. Using assembly theory to explain changes in a weed flora in response to agricultural intensification. Weed Sci. 2010, 58, 39–46. [Google Scholar] [CrossRef]
- Hellwig, F.H. Centaureinae (Asteraceae) in the Mediterranean—History of ecogeographical radiation. Plant Syst. Evol. 2004, 246, 137–162. [Google Scholar] [CrossRef]
- Darwin, C. The Origin of Species and the Descent of Man; Modern Library: New York, NY, USA, 1859. [Google Scholar]
- Munoz, F.; Grenié, M.; Denelle, P.; Taudière, A.; Laroche, F.; Tucker, C.; Violle, C. ecolottery: Simulating and assessing community assembly with environmental filtering and neutral dynamics in R. Methods Ecol. Evol. 2018, 9, 693–703. [Google Scholar] [CrossRef]
- Fried, G.; Petit, S.; Reboud, X. A specialist-generalist classification of the arable flora and its response to changes in agricultural practices. BMC Ecol. 2010, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Fried, G.; Petit, S.; Dessaint, F.; Reboud, X. Arable weed decline in Northern France: Crop edges as refugia for weed conservation? Biol. Conserv. 2009, 142, 238–243. [Google Scholar] [CrossRef]
- Marshall, E. Distribution patterns of plants associated with arable field edges. J. Appl. Ecol. 1989, 26, 247–257. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Arnold, G.M. Factors affecting field weed and field margin flora on a farm in Essex, UK. Landsc. Urban Plan. 1995, 31, 205–216. [Google Scholar] [CrossRef]
- Borgy, B.; Reboud, X.; Peyrard, N.; Sabbadin, R.; Gaba, S. Dynamics of Weeds in the Soil Seed Bank: A Hidden Markov Model to Estimate Life History Traits from Standing Plant Time Series. PLoS ONE 2015, 10, e0139278. [Google Scholar] [CrossRef]
- Albrecht, H.; Cambecèdes, J.; Lang, M.; Wagner, M. Management options for the conservation of rare arable plants in Europe. Bot. Lett. 2016, 163, 389–415. [Google Scholar] [CrossRef] [Green Version]
- Fried, G.; Dessaint, F.; Reboud, X. Local and regional changes in taxonomic and functional diversity of arable weed communities in Burgundy (France) between the 1970s and the 2000s. Bot. Lett. 2016, 163, 359–371. [Google Scholar] [CrossRef]
- Richner, N.; Holderegger, R.; Linder, H.P.; Walter, T. Reviewing change in the arable flora of Europe: A meta-analysis. Weed Res. 2015, 55, 1–13. [Google Scholar] [CrossRef]
- Jauzein, P. L’appauvrissement floristique des champs cultivés. Doss. de l’Environnement de l’INRA 2001, 21, 65–78. [Google Scholar]
- Gaba, S.; Reboud, X.; Fried, G. Agroecology and conservation of weed diversity in agricultural lands. Bot. Lett. 2015, 163, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Bretagnolle, V.; Gaba, S. Weeds for bees? A review. Agron. Sustain. Dev. 2015, 35, 891–909. [Google Scholar] [CrossRef] [Green Version]
- Blaix, C.; Moonen, A.C.; Dostatny, D.F.; Izquierdo, J.; Le Corff, J.; Morrison, J.; Von Redwitz, C.; Schumacher, M.; Westerman, P.R. Quantification of regulating ecosystem services provided by weeds in annual cropping systems using a systematic map approach. Weed Res. 2018, 58, 151–164. [Google Scholar] [CrossRef]
- Storkey, J.; Neve, P. What good is weed diversity? Weed Res. 2018, 58, 239–243. [Google Scholar] [CrossRef]
- Fried, G.; Chauvel, B.; Munoz, F.; Reboud, X. Which Traits Make Weeds More Successful in Maize Crops? Insights from a Three-Decade Monitoring in France. Plants 2020, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Smart, S.M.; Thompson, K.; Marrs, R.H.; Le Duc, M.G.; Maskell, L.C.; Firbank, L.G. Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc. R. Soc. Lond. B Biol. Sci. 2006, 273, 2659–2665. [Google Scholar] [CrossRef] [Green Version]
- Perronne, R.; Munoz, F.; Borgy, B.; Reboud, X.; Gaba, S. How to design trait-based analyses of community assembly mechanisms: Insights and guidelines from a literature review. Perspect. Plant Ecol. Evol. Syst. 2017, 25, 29–44. [Google Scholar] [CrossRef]
- Mahaut, L.; Fried, G.; Gaba, S. Patch dynamics and temporal dispersal partly shape annual plant communities in ephemeral habitat patches. Oikos 2018, 127, 147–159. [Google Scholar] [CrossRef]
- Mahaut, L.; Cheptou, P.O.; Fried, G.; Munoz, F.; Storkey, J.; Vasseur, F.; Violle, C.; Bretagnolle, F. Weeds: Against the Rules? Trends Plant Sci. 2020. [Google Scholar] [CrossRef]
- Lewis, R.J.; de Bello, F.; Bennett, J.A.; Fibich, P.; Finerty, G.E.; Götzenberger, L.; Hiiesalu, I.; Kasari, L.; Lepš, J.; Májeková, M.; et al. Applying the dark diversity concept to nature conservation. Conserv. Biol. 2016, 31, 40–47. [Google Scholar] [CrossRef] [PubMed]
Dataset | Methodology | Spatial Extent | Temporal Extent | Species Number | References |
---|---|---|---|---|---|
Flora of cultivated fields | All wild plant taxa reported in cultivated fields | Whole France | Unlimited | 1402 | [7] |
National “messicole” list | Plant taxa reputed to be specific to crops | Whole France | Unlimited | 258 | [14] |
Divgrass | Phytosociological surveys, with classes of species abundances | Whole France | Unlimited | 5245 | [23] |
Biovigilance Flore network | 2000 m2 quadrats, 1440 arable fields (core of fields) | Whole France | 9 years (2002–2010) | 332 | [24] |
LTSER Zone Atelier “Plaine & Val de Sèvre” (ZA-PVS) | 20 to 32 sampling plots 1 to 4 m2, c.200 fields per year (core of fields plus margin) | West of France (450 km2) | 10 years (2006–2016) | 399 | [25] |
Observed (and Expected) Number of Taxa | ||||||
---|---|---|---|---|---|---|
Divgrass | Agrestal taxa | Jauzein | Biovigilance | ZA-PVS | Global dataset | |
Dry calcareous grasslands | 1076 | 27 (73) | 131 (353) | 21 (96) | 56 (119) | 162 (380) |
Mesic grasslands | 472 | 27 (32) | 152 (155) | 63 (42) | 102 (52) | 168 (167) |
Ruderal and trampled grasslands | 1447 | 160 (99) | 691 (474) | 160 (129) | 148 (160) | 706 (510) |
Mesophilous and nitrophilous fringes | 296 | 11 (20) | 105 (97) | 50 (26) | 55 (33) | 125 (104) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munoz, F.; Fried, G.; Armengot, L.; Bourgeois, B.; Bretagnolle, V.; Chadoeuf, J.; Mahaut, L.; Plumejeaud, C.; Storkey, J.; Violle, C.; et al. Ecological Specialization and Rarity of Arable Weeds: Insights from a Comprehensive Survey in France. Plants 2020, 9, 824. https://doi.org/10.3390/plants9070824
Munoz F, Fried G, Armengot L, Bourgeois B, Bretagnolle V, Chadoeuf J, Mahaut L, Plumejeaud C, Storkey J, Violle C, et al. Ecological Specialization and Rarity of Arable Weeds: Insights from a Comprehensive Survey in France. Plants. 2020; 9(7):824. https://doi.org/10.3390/plants9070824
Chicago/Turabian StyleMunoz, François, Guillaume Fried, Laura Armengot, Bérenger Bourgeois, Vincent Bretagnolle, Joël Chadoeuf, Lucie Mahaut, Christine Plumejeaud, Jonathan Storkey, Cyrille Violle, and et al. 2020. "Ecological Specialization and Rarity of Arable Weeds: Insights from a Comprehensive Survey in France" Plants 9, no. 7: 824. https://doi.org/10.3390/plants9070824
APA StyleMunoz, F., Fried, G., Armengot, L., Bourgeois, B., Bretagnolle, V., Chadoeuf, J., Mahaut, L., Plumejeaud, C., Storkey, J., Violle, C., & Gaba, S. (2020). Ecological Specialization and Rarity of Arable Weeds: Insights from a Comprehensive Survey in France. Plants, 9(7), 824. https://doi.org/10.3390/plants9070824