Influence of the Maturity Stage on the Phytochemical Composition and the Antioxidant Activity of Four Andean Blackberry Cultivars (Rubus glaucus Benth) from Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Plant Material
2.3. Preparation of Samples
2.4. Physicochemical Analysis
2.4.1. Evaluation of Color
2.4.2. Determination of Total Soluble Solids (TSS)
2.4.3. Determination of Titratable Acidity (TA)
2.4.4. Maturity Index (MI)
2.5. Preparation of Extracts of Blackberries
2.6. Quantification of Total Polyphenol Content (TPC)
2.7. Quantification of Total Flavonoid Content (TFC)
2.8. Quantification of Total Anthocyanin Content (TAC)
2.9. Evaluation of Antioxidant Activity by the ABTS Method
2.10. Evaluation of Antioxidant Activity by Ferric Reducing Power (FRAP) Method
2.11. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Analysis
3.1.1. Determination of Color
3.1.2. Total Soluble Solids (TSS), Titratable Acidity (TA), and Maturity Index (MI)
3.2. Total Polyphenol Content (TPC)
3.3. Total Flavonoid Content (TFC)
3.4. Total Anthocyanin Content (TAC)
3.5. Antioxidant Activity (AA)
3.5.1. Evaluation of Antioxidant Activity by the ABTS Method
3.5.2. Evaluation of Antioxidant Activity by the FRAP Method
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Capocasa, F.; Scalzo, J.; Mezzetti, B.; Battino, M. Combining quality and antioxidant attributes in the strawberry: The role of genotype. Food Chem. 2008, 111, 872–878. [Google Scholar] [CrossRef]
- Andersen, Q.M.; Markham, K.R. Flavonoids, Chemistry, Biochemistry and Applications; Taylor & Francis Group, 2006; ISBN 0-8493-2021-6. Available online: http://www.uctm-biotechnology.org/Flavonoids.pdf (accessed on 6 April 2020).
- Huang, W.; Zhang, H.; Liu, W.; Li, C. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ. Sci. B 2012, 13, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Boeri, P.; Piñuel, L.; Dalzotto, D.; Monasterio, R.; Fontana, A.; Sharry, S.; Barrio, D.A.; Carrillo, W. Argentine Patagonia barberry chemical composition and evaluation of its antioxidant capacity. J. Food Biochem. 2020, 44, e13254. [Google Scholar] [CrossRef] [PubMed]
- Piñuel, L.; Boeri, P.; Zubillaga, F.; Barrio, D.A.; Torreta, J.; Cruz, A.; Vásquez, G.; Pinto, A.; Carrillo, W. Production of white, red and black quinoa (Chenopodium quinoa Willd Var. Real) protein isolates and its hydrolysates in germinated and non-germinated quinoa samples and antioxidant activity evaluation. Plants 2019, 8, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coronado, H.M.; Vega, S.; Gutiérrez, T.R.; Vázquez, F.M.; Radilla, V.C. Antioxidants: Present perspective for the human health. Rev. Chil. Nutr. 2015, 42, 206–212. [Google Scholar]
- Vilcacundo, R.; Barrio, D.A.; Piñuel, L.; Boeri, P.; Tombari, A.; Pinto, A.; Welbaum, J.; Hernández-Ledesma, B.; Carrillo, W. Inhibition of lipid peroxidation of kiwicha (Amaranthus caudatus) hydrolyzed protein using zebrafish larvae and embryos. Plants 2018, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, W.; Gómez-Ruiz, J.A.; Miralles, B.; Ramos, M.; Barrio, D.; Recio, I. Identification of antioxidant peptides of hen egg-white lysozyme and evaluation of inhibition of lipid peroxidation and cytotoxicity in the Zebrafish model. Eur. Food Res. Technol. 2016, 242, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Piñuel, L.; Vilcacundo, E.; Boeri, P.; Barrio, D.A.; Morales, D.; Pinto, A.; Morán, R.; Samaniego, I.; Carrillo, W. Extraction of protein concentrate from red bean (Phaseolus vulgaris L.): Antioxidant activity and inhibition of lipid peroxidation. J. Appl. Pharm. Sci. 2019, 9, 1–14. [Google Scholar]
- Lee, J.; Dossett, M.; Finn, C.E. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem. 2012, 130, 785–796. [Google Scholar] [CrossRef]
- Bernal, L.J.; Melo, L.A.; Díaz Moreno, C. Evaluation of the antioxidant properties and aromatic profile during maturation of the blackberry (Rubus glaucus Benth) and the bilberry (Vaccinium meridionale Swartz). Rev. Fac. Nac. Agron. 2014, 67, 7209–7218. [Google Scholar] [CrossRef]
- Vásquez, W.; Pupiales, P.; Viteri, P.; Sotomayor, A.; Feican, C.; Campaña, D.; Viera, W. Chemical scarification and use of gibberellic acid for seed germination of blackberry cultivars (Rubus glaucus Benth). Interciencia 2019, 44, 159–164. [Google Scholar]
- Meret, M.; Brat, P.; Mertz, C.; Lebrun, M.; Günata, Z. Contribution to aroma potential of Andean blackberry (Rubus glaucus Benth.). Food Res. Int. 2011, 44, 54–60. [Google Scholar] [CrossRef]
- Morales, A.L.; Albarracin, D.; Rodriguez, J.; Duque, C.; Riano, L.E.; Espitia, J. Volatile constituents from Andes berry (Rubus glaucus Benth). J. High. Resolut. Chrom. 1996, 19, 585–587. [Google Scholar] [CrossRef]
- Ramos, F.A.; Delgado, J.L.; Bautista, E.; Morales, A.L.; Duque, C. Changes in volatiles with the application of progressive freeze-concentration to Andes berry (Rubus glaucus Benth). J. Food Eng. 2005, 69, 291–297. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef]
- Acosta-Montoya, Ó.; Vaillant, F.; Cozzano, S.; Mertz, C.; Pérez, A.M.; Castro, M.V. Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chem. 2010, 119, 1497–1501. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Mertz, C.; Cheynier, V.; Günata, Z.; Brat, P. Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J. Agric. Food Chem. 2007, 55, 8616–8624. [Google Scholar] [CrossRef]
- Vasco, C.; Riihinen, K.; Ruales, J.; Kamal-Eldin, A. Phenolic compounds in Rosaceae fruits from Ecuador. J. Agric. Food Chem. 2009, 56, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Rodríguez, E.O.; Yousef, G.G.; García-Saucedo, P.A.; López-Medina, J.; Paredes-López, O.; Lila, M.A. Characterization of anthocyanin and pro-anthocyanidins in wild and domesticated Mexican blackberries (Rubus spp.). J. Agric. Food Chem. 2010, 58, 7458–7464. [Google Scholar]
- Cuevas-Rodríguez, E.O.; Dia, V.P.; Yousef, G.G.; García-Saucedo, P.A.; López-Medina, J.; Paredes-Lopez, O.; González de Mejía, E.; Lila, M.A. Inhibition of pro-inflammatory responses and antioxidant capacity of Mexican blackberry (Rubus spp.) extracts. J. Agric. Food Chem. 2010, 58, 9542–9548. [Google Scholar] [CrossRef] [PubMed]
- Jing, P.; Bomser, J.A.; Schwartz, S.J.; He, J.; Magnuson, B.A.; Giusti, M.M. Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J. Agric. Food Chem. 2008, 56, 9391–9398. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, S. Flavonols and Phenolic Acids in Berries and Berry Products. Ph.D. Thesis, University of Kuopio, Kuopio, Finland, 2000. Available online: https://pdfs.semanticscholar.org/8250/42c6785a8c9ee2d33a5d00100e0c6a6e4eb0.pdf (accessed on 6 April 2020).
- Garzón, G.A.; Riedl, K.M.; Schwartz, S.J. Determination of anthocyanins, total phenolic content, and antioxidant activity in Andes berry (Rubus glaucus Benth). J. Food Sci. 2009, 74, C227–C232. [Google Scholar] [CrossRef] [PubMed]
- Horvitz, S.; Chanaguano, D.; Arozarena, I. Andean blackberries (Rubus glaucus Benth) quality as affected by harvest maturity and storage conditions. Sci. Hortic. 2017, 226, 293–301. [Google Scholar] [CrossRef]
- Iza, M.; Viteri, P.; Hinojosa, M.; Martínez, A.; Sotomayor, A.; Viera, W. Morphological, phenological and pomological differentiation of commercial cultivars of blackberry (Rubus glaucus Benth). Enfoque UTE 2020, 11, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Llanes, J.P.; Martínez, J.R.; Stashenko, E.E. Content of phenolic compounds and antioxidant capacity of blackberry (Rubus glaucus Benth) extracts obtained under different conditions. Vitae 2014, 21, 218–227. [Google Scholar]
- Jácome, R.; Ayala, G.; Martínez, A.; Viteri, P.; Vásquez, W.; Sotomayor, A. Caracterización del sistema de producción, zonas de producción y tipificación de productores del Ecuador. In El Cultivo de Mora en el Ecuador; Galarza, D., Garcés, S., Velásquez, J., Sánchez, V., Zambrano, J., Eds.; Instituto Nacional de Investigaciones Agropecuarias (INIAP): Quito, Ecuador, 2016; pp. 27–38. [Google Scholar]
- Viera, W.; Sotomayor, A.; Viteri, P. Breeding of three Andean fruit crops in Ecuador. Chron. Hortic. 2019, 54, 20–29. [Google Scholar]
- Grijalba, C.; Calderón, L.; Pérez, M. Yield and fruit quality of Andean blackberry (Rubus glaucus Benth), thorn and thornless, cultivated in open field conditions in Cajicá (Cundinamarca, Colombia). Rev. Fac. Cienc. Básicas 2010, 6, 24–41. [Google Scholar]
- Rubio, G. Investigación de la Mora y Propuesta Gastronómica. Bachelor’s Thesis, Universidad Tecnológica Equinoccial, Quito, Ecuador, 2014. Available online: http://repositorio.ute.edu.ec/bitstream/123456789/11913/1/56668_1.pdf (accessed on 6 April 2020).
- INEN. 2016. NTE INEN 2427. Frutas Frescas. Mora. Available online: http://181.112.149.204/buzon/normas/nte_inen_2427-1.pdf (accessed on 6 April 2020).
- Llerena, W.; Samaniego, I.; Angos, I.; Brito, B.; Ortiz, B.; Carrillo, W. Biocompounds content prediction in ecuadorian fruits using a mathematical model. Foods 2019, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Hue, C.; Brat, P.; Gunata, Z.; Samaniego, I.; Servent, A.; Morel, G.; Davrieux, F. Near infra-red characterization of changes in flavan-3-ol derivatives in cocoa (Theobroma cacao L.) as a function of fermentation temperature. J. Agric. Food Chem. 2014, 62, 10136–10142. [Google Scholar] [CrossRef]
- Samaniego, I.; Espin, S.; Cuesta, X.; Arias, V.; Rubio, A.; Llerena, W.; Angós, I.; Carrillo, W. Analysis of environmental conditions effect in the phytochemical composition of potato (Solanum tuberosum) cultivars. Plants 2020, 9, 815. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Rapisarda, P.; Fanella, F.; Maccarone, E. Reliability of analytical methods for determining anthocyanins in blood orange juices. J. Agric. Food Chem. 2000, 48, 2249–2252. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, M.; Vásquez, G.; Morales, D.; Vilcacundo, R.; Carrillo, W. Isolation of baby lima bean (Phaseolus lunatus L.) proteins fractions and evaluation of their antioxidant activity. Ital. J. Food Sci. 2020, 32, 275–291. [Google Scholar]
- Babu, D.; Gurumurthy, P.; Borra, S.K.; Cherian, K.M. Antioxidant and free radical scavenging activity of triphala determined by using different in vitro models. J. Med. Plants Res. 2013, 7, 2898–2905. [Google Scholar]
- Kalt, W.; McRae, K.B.; Hamilton, L.C. Relationship between surface color and other maturity indices in wild lowbush blueberries. Can. J. Plant Sci. 1995, 75, 485–490. [Google Scholar] [CrossRef]
- Tosun, I.; Ustun, N.S.; Tekguler, B. Physical and chemical changes during ripening of blackberry fruits. Sci. Agric. 2008, 65, 87–90. [Google Scholar] [CrossRef]
- Wills, R.B.H.; McGlasson, W.B.; Graham, D.; Joyce, D.C. Structure and composition. In Postharvest: An Introduction to the Physiology and Handling of Fruit, Vegetables and Ornamentals; Cab International: Sydney, Australia, 1998; pp. 15–27. [Google Scholar]
- Farinango, M.E. Estudio de la Fisiología Postcosecha de la Mora de Castilla (Rubus glaucus Benth) y de la Mora Variedad Brazos (Rubus sp.). Bachelor’s Thesis, Escuela Politécnica Nacional, Quito, Ecuador, 2010. Available online: https://bibdigital.epn.edu.ec/handle/15000/1668 (accessed on 6 April 2020).
- Brito, B.; Montalvo, D.; Freire, V.; Vásquez, W.; Viteri, P.; Martínez, A.; Jácome, R. Calidad en la cosecha, poscosecha y comercialización. In El Cultivo de la Mora en el Ecuador; Galarza, D., Garcés, S., Velásquez, J., Sánchez, V., Zambrano, J., Eds.; INIAP: Quito, Ecuador, 2016; p. 142. ISBN 978-9942-2240-0. [Google Scholar]
- Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Kaume, L.; Howard, L.R.; Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and biovailability, and health benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef]
- Mertz, C.; Gancel, A.L.; Gunata, Z.; Alter, P.; Dhuique-Mayer, C.; Vaillant, F.; Brat, P. Phenolic compounds, carotenoids and antioxidant activity of three tropical fruits. J. Food Comp. Anal. 2009, 22, 381–387. [Google Scholar] [CrossRef]
- Llerena, W.; Samaniego, I.; Ramos, M.; Brito, B. Physico-chemistry and functional characterization of six tropical and Andean Ecuatorian fruits. Aliment. Cienc. Ing. 2014, 22, 13–22. [Google Scholar]
- Armijos, D. Determinación del Contenido de Compuestos Bioactivos y Estudio de las Propiedades Antioxidantes en Extractos de mora Andina (Rubus glaucus Benth) de Ecuador. Bachelor’s Thesis, Universidad de las Américas, Quito, Ecuador, 2018. Available online: http://dspace.udla.edu.ec/handle/33000/9346 (accessed on 6 April 2020).
- Ivanovic, J.; Tadic, V.; Dimitrijevic, D.; Stamenic, M.; Petrovic, S.; Zizovic, I. Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Cacanska Bestrna”. Ind. Crops Prod. 2014, 53, 274–281. [Google Scholar] [CrossRef]
- Schulz, M.; Tischer, S.; Della Betta, F.; Nehring, P.; Camargo, A.; Daguer, H.; Valdemiro, L.; Oliveira, A.; Fett, R. Blackberry (Rubus Ulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Res. Int. 2019, 122, 627–634. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Maturity Stage | Color | ||||
---|---|---|---|---|---|---|
L* | a* | b* | C* | °H | ||
Lightness | (+ Red, − Green) | (+ Yellow, − Blue) | Chroma | Hue | ||
Brazos | E1-25% | 65.76 ± 2.27 | 4.98 ± 0.81 | 24.04 ± 0.83 | 24.55 ± 0.98 | 11.67 ± 1.48 |
E2-50% | 52.50 ± 3.20 | 16.74 ± 2.15 | 14.57 ± 5.83 | 22.38 ± 0.67 | 49.00 ± 7.02 | |
E3-100% | 20.85 ± 0.60 | 12.05 ± 0.10 | 6.97 ± 0.98 | 13.93 ± 2.58 | 59.99 ± 4.47 | |
Colombiana | E1-25% | 66.87 ± 2.92 | 6.11 ± 2.19 | 19.94 ± 2.83 | 20.96 ± 0.47 | 17.20 ± 8.19 |
E2-50% | 45.07 ± 3.57 | 19.66 ± 0.95 | 10.79 ± 4.83 | 22.45 ± 0.65 | 61.20 ± 8.97 | |
E3-100% | 19.73 ± 0.59 | 11.78 ± 0.75 | 6.29 ± 2.83 | 13.37 ± 0.45 | 61.88 ± 3.21 | |
Castilla | E1-25% | 64.52 ± 2.46 | 7.12 ± 1.66 | 21.58 ± 5.83 | 22.77 ± 1.06 | 18.31 ± 0.79 |
E2-50% | 40.84 ± 4.08 | 20.56 ± 0.82 | 12.89 ± 3.85 | 24.27 ± 1.40 | 57.93 ± 1.28 | |
E3-100% | 23.95 ± 1.48 | 14.60 ±1.83 | 7.45 ± 2.83 | 16.39 ± 0.22 | 62.97 ± 1.85 | |
E1-25% | 64.21 ± 2.56 | 8.39 ± 2.71 | 19.60 ± 6.83 | 21.47 ± 0.68 | 23.23 ± 2.76 | |
Andinamora | E2-50% | 50.49 ± 4.25 | 20.39 ± 1.06 | 11.32 ± 3.83 | 23.33 ± 2.09 | 61.00 ± 1.28 |
E3-100% | 29.01 ± 3.80 | 17.87 ± 2.56 | 8.58 ± 1.83 | 19.82 ± 2.84 | 64.34 ± 0.77 |
Cultivar | Maturity Stage | Soluble Solids (°Brix) | Titratable Acidity (% Citric Acid) | Maturity Index (TSS/TA) | |||
---|---|---|---|---|---|---|---|
Brazos | E1-25% | 6.32 ± 0.13 | Cg | 3.56 ± 0.04 | Acd | 1.77 ± 0.05 | Cd |
E2-50% | 7.07 ± 0.03 | Bf | 2.68 ± 0.03 | Bf | 2.64 ± 0.02 | Bc | |
E3-100% | 9.81 ± 0.08 | Ac | 1.58 ± 0.03 | Cg | 6.21 ± 0.18 | Aa | |
Colombiana | E1-25% | 6.23 ± 0.19 | Cg | 3.98 ± 0.11 | Abc | 1.57 ± 0.08 | Cde |
E2-50% | 8.36 ± 0.250 | Bd | 3.25 ± 0.10 | Bde | 2.57 ± 0.13 | Bc | |
E3-100% | 11.00 ± 0.131 | Ab | 2.82 ± 0.11 | Cef | 3.91 ± 0.18 | Ab | |
Castilla | E1-25% | 6.08 ± 0.08 | Cg | 5.28 ± 0.15 | Aa | 1.15 ± 0,03 | Ce |
E2-50% | 7.64 ± 0.08 | Be | 4.27 ± 0.23 | Bb | 1.79 ± 0.10 | Bd | |
E3-100% | 12.26 ± 0.31 | Aa | 3.19 ± 0.19 | Cde | 3.86 ± 0.30 | Ab | |
Andinamora | E1-25% | 6.19 ± 0.12 | Cg | 4.95 ± 0.26 | Aa | 1.25 ± 0.05 | Ce |
E2-50% | 7.47 ± 0.18 | Bef | 4.23 ± 0.23 | Bb | 1.77 ± 0.10 | Bd | |
E3-100% | 12.14 ± 0.12 | Aa | 2.96 ± 0.27 | Cef | 4.12 ± 0.33 | Ab |
Cultivar | Maturity Stage | TPC (mg GAE/g DW) | TFC (mg Cat/g DW) | TAC (mg cy-3-glu/g DW) | |||
---|---|---|---|---|---|---|---|
Brazos | E1-25% | 51.26 ± 2.46 | Abcd | 13.76 ± 0.11 | Abc | 0.67 ± 0.50 | Cf |
E2-50% | 38.16 ± 1.64 | Bfg | 11.19 ± 0.21 | Bdef | 1.21 ± 4.29 | Bef | |
E3-100% | 31.59 ± 1.03 | Bg | 8.02 ± 0.50 | Bg | 8.63 ± 12.19 | Ac | |
Colombiana | E1-25% | 81.10 ± 4.44 | Aa | 19.15 ± 0.77 | Aa | 1.40 ± 2.29 | Cef |
E2-50% | 52.51 ± 2.92 | Bbce | 12.64 ± 1.00 | Bbcf | 2.95 ± 5.13 | Bd | |
E3-100% | 45.18 ± 0.97 | Bdef | 12.30 ± 0.63 | Bcdf | 12.26 ± 5.30 | Aa | |
Castilla | E1-25% | 55.47 ± 1.34 | Ab | 11.19 ± 0.94 | Adef | 1.02 ± 7.50 | Cf |
E2-50% | 42.89 ± 2.16 | Bef | 10.89 ± 0.94 | Bdef | 2.55. ± 20.95 | Bd | |
E3-100% | 44.68 ± 2.28 | Bdef | 10.11 ± 0.14 | Be | 10.89 ± 10.23 | Ab | |
Andimora | E1-25% | 76.43 ± 3.98 | Aa | 14.20 ± 0.79 | Ab | 1.11 ± 2.32 | Cef |
E2-50% | 42.86 ± 1.60 | Bef | 12.59 ± 0.24 | Bbcf | 2.16 ± 1.62 | Bde | |
E3-100% | 46.19 ± 1.02 | Bcde | 10.75 ± 0.64 | Bde | 9.26 ± 28.81 | Ac |
Antioxidant Activity | |||||
---|---|---|---|---|---|
Cultivar | Maturity Stage | ABTS (µmol TE/g DW) | FRAP (µmol TE/g DW) | ||
Brazos | E1-25% | 630.61 ± 20.66 | Ad | 717.13 ± 43.18 | Acd |
E2-50% | 550.67 ± 39.66 | Bd | 546.03 ± 21.33 | Be | |
E3-100% | 344.42 ± 4.05 | Be | 338.43 ± 28.85 | Cf | |
Colombiana | E1-25% | 1278.63 ± 14.14 | Aa | 1284.55 ± 62.80 | Aa |
E2-50% | 793.88 ± 47.70 | Bbc | 825.29 ± 51.55 | Bc | |
E3-100% | 582.59 ± 23.45 | Bd | 563.08 ± 6.48 | Ce | |
Castilla | E1-25% | 701.62 ± 38.50 | Acd | 771.05 ± 34.24 | Ac |
E2-50% | 660.40 ± 45.00 | Bcd | 721.92 ± 23.08 | Bcd | |
E3-100% | 658.28 ± 31.30 | Bcd | 548.23 ± 45.30 | Ce | |
Andimora | E1-25% | 929.30 ± 40.95 | Ab | 1124.22 ± 60.33 | Ab |
E2-50% | 581.15 ± 8.12 | Bd | 795.29 ± 10.07 | Bc | |
E3-100% | 592.76 ± 25.37 | Bd | 655.43 ± 29.17 | Cde |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samaniego, I.; Brito, B.; Viera, W.; Cabrera, A.; Llerena, W.; Kannangara, T.; Vilcacundo, R.; Angós, I.; Carrillo, W. Influence of the Maturity Stage on the Phytochemical Composition and the Antioxidant Activity of Four Andean Blackberry Cultivars (Rubus glaucus Benth) from Ecuador. Plants 2020, 9, 1027. https://doi.org/10.3390/plants9081027
Samaniego I, Brito B, Viera W, Cabrera A, Llerena W, Kannangara T, Vilcacundo R, Angós I, Carrillo W. Influence of the Maturity Stage on the Phytochemical Composition and the Antioxidant Activity of Four Andean Blackberry Cultivars (Rubus glaucus Benth) from Ecuador. Plants. 2020; 9(8):1027. https://doi.org/10.3390/plants9081027
Chicago/Turabian StyleSamaniego, Iván, Beatriz Brito, William Viera, Ana Cabrera, Wilma Llerena, Tissa Kannangara, Rubén Vilcacundo, Ignacio Angós, and Wilman Carrillo. 2020. "Influence of the Maturity Stage on the Phytochemical Composition and the Antioxidant Activity of Four Andean Blackberry Cultivars (Rubus glaucus Benth) from Ecuador" Plants 9, no. 8: 1027. https://doi.org/10.3390/plants9081027
APA StyleSamaniego, I., Brito, B., Viera, W., Cabrera, A., Llerena, W., Kannangara, T., Vilcacundo, R., Angós, I., & Carrillo, W. (2020). Influence of the Maturity Stage on the Phytochemical Composition and the Antioxidant Activity of Four Andean Blackberry Cultivars (Rubus glaucus Benth) from Ecuador. Plants, 9(8), 1027. https://doi.org/10.3390/plants9081027