Classification of Pigeonpea (Cajanus cajan (L.) Millsp.) Genotypes for Zinc Efficiency
Abstract
:1. Introduction
2. Results
2.1. Plant Height, Branches Plant−1, Pods Plant−1, Seeds Pod−1, and 100 Seed Weight of Pigeonpea Genotypes
2.2. Hundred Seed Weight, Seed Yield, Seed Zinc Concentration, and Seed Zinc Uptake of Pigeonpea Genotypes
2.3. Relationship among Growth and Yield Parameters of Pigeonpea
2.4. Seed Yield Efficiency Index, Zn Uptake Efficiency Index and Classification of Pigeonpea Genotypes
3. Discussion
4. Materials and Methods
4.1. Experimental Site
4.2. Experimental Details
4.3. Recording Observations for Growth Parameters, Plant Sampling and Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAI. Fertiliser Statistics 2016–2017; The Fertilizer Association of India: New Delhi, India, 2017. [Google Scholar]
- Alloway, B.J. Micronutrient Deficiencies in Global Crop Production, 1st ed.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Shukla, A.K.; Behera, S.K. All India research project on micro- and secondary nutrients and pollutant elements in soils and plants: Research achievements and future thrusts. Indian J. Fertil. 2019, 15, 522–543. [Google Scholar]
- Khan, B.; Baloch, M.S.; Hussain, S.M. Micro-nutritional studies in pigeonpea. Pak. J. Biol. Sci. 1999, 2, 399–401. [Google Scholar] [CrossRef]
- Khudsar, T.; Arshi, A.; Siddiqi, T.O.; Mahmooduzzafar Iqbal, M. Zinc-induced changes in growth characters, foliar properties, and Zn-accumulation capacity of pigeonpea at different stages of plant growth. J. Plant Nutr. 2008, 31, 281–306. [Google Scholar] [CrossRef]
- Singh, P.; Shukla, A.K.; Behera, S.K.; Tiwari, P.K. Zinc application enhances super oxide dismutase and carbonic anhydrase activities in zinc efficient and inefficient wheat genotypes. J. Soil Sci. Plant Nutr. 2019, 19, 477–487. [Google Scholar] [CrossRef]
- Welch, R.M.; Graham, R.D. Breeding crops for enhanced micronutrient content. Plant Soil 2002, 245, 205–214. [Google Scholar] [CrossRef]
- Rengel, Z.; Batten, G.D.; Crowley, D.E. Agronomic approaches for improving the micronutrient density in edible portion of field crops. Field Crop. Res. 1999, 60, 27–40. [Google Scholar] [CrossRef]
- Li, M.; Tian, X.; Li, X.; Wang, S. Effect of Zn application methods on Zn distribution and bioavailability in wheat pearling fractions of two wheat genotypes. J. Integr. Agric. 2017, 16, 1617–1623. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Haider, M.U.; Hussain, M.; Farooq, M.; Nawaz, A. Zinc nutrition for improving the productivity and grain biofortification of mungbean. J. Soil Sci. Plant Nutr. 2020. [Google Scholar] [CrossRef]
- Lynch, J. The role of nutrient-efficient crops in modern agriculture. J. Crop Prod. 1998, 1, 241–264. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Jones, C.A. Growth and Mineral Nutrition of Field Crops, 2nd ed.; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- Shukla, U.C.; Raj, H. Zinc response in pigeonpea as influenced by genotypic variability. Plant Soil 1980, 57, 323–333. [Google Scholar] [CrossRef]
- Dube, B.K.; Sharma, C.P.; Chatterjee, C. Response of pigeonpea to applied zinc in Ustifluvent soils of western Uttar Pradesh. J. Indian Soc. Soil Sci. 2001, 49, 471–475. [Google Scholar]
- Rafique, E.; Yousra, M.; Mahmood-Ul-Hassan, M.; Sarwar, S.; Tabassam, T.; Choudhary, T.K. Zinc application affects tissue zinc concentration and seed yield of pea (Pisum sativum L.). Pedosphere 2015, 25, 275–281. [Google Scholar] [CrossRef]
- Safaya, N.M.; Singh, B. Differential susceptibility of two varieties of cowpea (Vigna unguiculata (L.), Walp) to phosphorus—Induced zinc deficiency. Plant Soil 1977, 48, 279–290. [Google Scholar] [CrossRef]
- Ambler, J.E.; Brown, J.C. Cause of differential susceptibility to Zinc deficiency in two varieties of navy beans (Phaseolus vulgaris L.). Agron. J. 1969, 61, 41–43. [Google Scholar] [CrossRef]
- Hacisalihoglu, G.; Ozturk, L.; Cakmak, I.; Welch, R.M.; Kochian, L. Genotypic variation in common bean in response to zinc deficiency in calcareous. Plant Soil 2004, 259, 71–83. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Shariatmadari, H.; Karimian, N.; Kalbasi, M.; Khajehpour, M.R. Zinc efficiency of wheat genotypes grown on a saline calcareous soil. J. Plant Nutr. 2004, 27, 1953–1962. [Google Scholar] [CrossRef]
- Jhanji, S.; Sadana, U.S.; Sekhon, N.K.; Khurana, M.P.S.; Sharma, A.; Shukla, A.K. Screening diverse wheat genotypes for manganese efficiency based on high yield and uptake efficiency. Field Crop. Res. 2013, 154, 127–132. [Google Scholar] [CrossRef]
- Sharma, A.; Nakul, H.T.; Jelgeri, B.R.; Surwenshi, A. Effect of micronutrients on growth, yield and yield components in pigeonpea (Cajanus cajan L. Millsp.). J. Agric. Sci. 2010, 1, 142–144. [Google Scholar]
- Umesh, M.R.; Shankar, M.A. Yield performance and profitability of pigeonpea (Cajanus cajana L.) varieties under different nutrient supply levels in dryland Alfisols of Karnataka. Indian J. Dry Land Agric. Res. Dev. 2013, 28, 63–69. [Google Scholar]
- Usman, M.; Tahir, M.; Majeed, M.A. Effect of zinc sulphate as soil application and seed treatment on green gram (Vigna radiata L.). Pak. J. Life Soc. Sci. 2014, 12, 87–91. [Google Scholar]
- Haider, M.U.; Hussain, M.; Farooq, M.; Nawaz, A. Soil application of zinc improves the growth, yield and grain zinc biofortification of mungbean. Soil Environ. 2018, 37, 123–128. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of zinc absorption in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Bio/Technol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Kimani, P.M.; Benzioni, A.; Ventura, M. Genetic variation in pigeonpea (Cajanus cajan (L.) Mill sp.) in response to successive cycles of water stress. Plant Soil 1994, 158, 193–201. [Google Scholar] [CrossRef]
- Khoiriyah, N.; Yuniastuti, E.; Purnomo, D. Genetic diversity of pigeonpea (Cajanus cajan (L.) Millsp.) based on molecular characterization using randomly amplified polymorphic DNA (RAPD) markers. Iop Conf. Ser. Earth Environ. Sci. 2018, 129, 012016. [Google Scholar] [CrossRef]
- David, O.J.; Richard, N.O.; Japheth, I.; Modesto, O.O. Plant characteristics and growth parameters of vegetable pigeonpea cultivars. HortTechnology 2016, 26, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Udensi, O.; Ikpeme, E.V.; Markson, A.A.; Edu, E.A.B.; Umana, E.J.; Urua, L.S. Selection of soybean genotypes using morphological markers. Int. J. Curr. Res. 2010, 7, 5–8. [Google Scholar]
- Saxena, K.B.; Sharma, D. Pigeonpea Genetics. In The Pigeonpea; Nene, Y.L., Hall, S.D., Sheila, V.K., Eds.; CAB International: Wallingford, UK, 1990; pp. 137–157. [Google Scholar]
- Sodavadiya, P.R.; Pithia, M.S.; Savaliya, J.J.; Pansuriya, A.G.; Korat, V.P. Studies on characters association and path analysis for seed yield and its components in pigeonpea (Cajanus cajan (L.) Millsp.). Legume Res. 2009, 32, 203–205. [Google Scholar]
- Pal, A.K.; Singh, R.S.; Shukla, U.N.; Singh, S. Growth and production potential of pigeonpea (Cajanus cajan L.) as influenced by intercropping and integrated nutrient management. J. Appl. Nat. Sci. 2016, 8, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Shukla, A.K.; Behera, S.K.; Tiwari, P.K.; Das, S.; Tripathi, A. Categorization of diverse wheat genotypes for zinc efficiency based on higher yield and uptake efficiency. J. Soil Sci. Plant Nutr. 2020, 20, 648–656. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Walkley, A.J.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanable, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; No. 939; United States Department of Agriculture Circular: Washington, DC, USA, 1954. [Google Scholar]
- Hanway, J.J.; Heidel, H. Soil analyses methods as used in Iowa state college soil testing laboratory. Iowa Agric. 1952, 57, 1–31. [Google Scholar]
- Jones, J.B., Jr. Soil test methods: Past, present, and future. Commun. Soil Sci. Plant Anal. 1998, 29, 1543–1552. [Google Scholar] [CrossRef]
- Williams, C.H.; Steinbergs, A. Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. Aust. J. Agric. Res. 1959, 10, 340–352. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–448. [Google Scholar] [CrossRef]
- Takkar, P.N.; Chhibba, I.M.; Mehta, S.K. Twenty Years of Coordinated Research on Micronutrients in Soils and Plants; IISS Bulletin No.1.; Indian Institute of Soil Science: Bhopal, India, 1989; pp. 1–394. [Google Scholar]
- Shukla, A.K. Understanding the Mechanism of Variation in Status of a Few Nutritionally Important Micronutrients in Some Important Food Crops and the Mechanism of Micronutrient Enrichment in Plant Parts; NAIP Funded Research Project; AICRP on Micro and Secondary Nutrients and Pollutant Elements in Soils and Plants; IISS: Bhopal, India, 2014. [Google Scholar]
- Hazra, G.C.; Saha, B.; Saha, S.; Dasgupta, S.; Adhikari, B.; Mandal, B. Screening of rice cultivars for their zinc biofortification potential in Inceptisols. J. Indian Soc. Soil Sci. 2015, 63, 347–357. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Shivare, A.K.; Kumar, V. Pigeonpea Production Technology; Directorate of Pulses Development; Government of India: Bhopal, India, 2017. [Google Scholar]
- Tandon, H.L.S. Methods of Analysis of Soils, Plants, Waters and Fertilisers; Fertiliser Development and Consultation Organisation: New Delhi, India, 2001; pp. 144 + vi. [Google Scholar]
- Graham, R.D.; Ascher, J.S.; Hynes, S.C. Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant Soil 1992, 146, 241–250. [Google Scholar] [CrossRef]
- Cochran, W.G.; Cox, G.M. Experimental Designs; Wiley: New York, NY, USA, 1957. [Google Scholar]
- SAS Institute. The SAS System for Windows; Release 9.2; SAS Institute: Cary, NC, USA, 2011. [Google Scholar]
- Clewer, G.; Scarisbrick, D.H. Practical Statistics and Experimental Design for Plant and Crop Science; John Wiley: Chichester, UK, 2001. [Google Scholar]
- Abdi, H.; Edelman, B.; Valentin, D.; Dowling, W.J. Experimental Design and Analysis for Psychology; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
Parameters | Factors | Plant Height | Branches Plant−1 | Pods Plant−1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
First Year | Second Year | Pooled | First Year | Second Year | Pooled | First Year | Second Year | Pooled | ||
F-ratio (calculated) | Year | - | - | 0.43 | - | - | 0.75 | - | - | 0.62 |
Zinc level (Zn) | 0.25 | 0.23 | 0.50 | 135.1 | 146.2 | 254.3 | 114.2 | 132.5 | 217.8 | |
Genotypes (G) | 0.26 | 0.25 | 0.49 | 0.35 | 8.24 | 9.36 | 1.21 | 5.86 | 6.25 | |
Zn x G | 0.32 | 0.41 | 0.11 | 0.43 | 1.58 | 0.67 | 0.25 | 1.11 | 0.87 | |
LSD (p < 0.05) | Year | - | - | NS | - | - | NS | - | - | NS |
Zinc level (Zn) | * | * | * | * | * | * | * | * | * | |
Genotypes (G) | * | * | * | * | * | * | * | * | * | |
Zn x G | NS | NS | NS | NS | NS | NS | NS | NS | NS | |
CV% | Year | - | - | 5.84 | - | - | 7.75 | - | - | 9.35 |
Zinc level (Zn) | 10.1 | 14.2 | 11.5 | 8.94 | 8.51 | 9.58 | 8.54 | 13.21 | 12.14 | |
Genotypes(G) | 9.89 | 13.2 | 12.5 | 10.5 | 11.5 | 12.7 | 15.2 | 13.8 | 14.8 | |
Seeds pod−1 | 100 seed weight | Seed yield | ||||||||
First year | Second year | Pooled | First year | Second year | Pooled | First year | Second year | Pooled | ||
F-ratio (calculated) | Year | - | - | 0.42 | - | - | 0.35 | - | - | 0.15 |
Zinc level (Zn) | 0.21 | 0.19 | 0.35 | 0.31 | 0.25 | 0.34 | 0.12 | 0.21 | 0.22 | |
Genotypes (G) | 0.31 | 0.24 | 0.37 | 0.38 | 0.30 | 0.40 | 0.15 | 0.20 | 0.27 | |
Zn x G | 0.41 | 0.35 | 0.17 | 0.45 | 0.47 | 0.25 | 0.28 | 0.27 | 0.31 | |
LSD (p < 0.05) | Year | - | - | NS | - | - | NS | - | - | NS |
Zinc level (Zn) | * | * | * | * | * | * | * | * | * | |
Genotypes (G) | * | * | * | * | * | * | * | * | * | |
Zn x G | NS | NS | NS | NS | NS | NS | NS | NS | NS | |
CV% | Year | - | - | 9.85 | - | - | 10.1 | - | - | 12.4 |
Zinc level (Zn) | 10.1 | 10.5 | 9.65 | 9.85 | 10.1 | 10.5 | 11.4 | 10.8 | 14.9 | |
Genotypes(G) | 8.59 | 11.54 | 10.4 | 10.4 | 11.2 | 12.5 | 12.4 | 11.7 | 13.5 | |
Seed Zn concentration | Seed Zn uptake | |||||||||
First year | Second year | Pooled | First year | Second year | Pooled | |||||
F-ratio (calculated) | Year | - | - | 1.21 | - | - | 2.56 | |||
Zinc level (Zn) | 71.5 | 85.4 | 135.6 | 114.2 | 175.3 | 341.7 | ||||
Genotypes (G) | 2.54 | 3.12 | 7.45 | 2.11 | 5.87 | 9.14 | ||||
Zn x G | 0.34 | 0.47 | 0.18 | 0.58 | 0.98 | 0.21 | ||||
LSD (p < 0.05) | Year | - | - | NS | - | - | NS | |||
Zinc level (Zn) | * | * | * | * | * | * | ||||
Genotypes (G) | * | * | * | * | * | * | ||||
Zn x G | NS | NS | NS | NS | NS | NS | ||||
CV% | Year | - | - | 9.78 | - | - | 8.74 | |||
Zinc level (Zn) | 7.45 | 9.13 | 9.41 | 10.1 | 11.5 | 12.4 | ||||
Genotypes(G) | 9.14 | 10.1 | 10.8 | 9.56 | 10.7 | 11.9 |
Genotypes | Plant Height (m) | Branches Plant−1 | Pods Plant−1 | Seeds Pod−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low Zn | High Zn | Mean | Low Zn | High Zn | Mean | Low Zn | High Zn | Mean | Low Zn | High Zn | Mean | |
C11 | 2.14 | 2.30 | 2.22 | 62 | 64 | 63 | 70 | 120 | 95 | 3.48 | 3.57 | 3.48 |
ICPL 87119 | 2.25 | 2.26 | 2.26 | 62 | 62 | 62 | 70 | 118 | 94 | 3.67 | 4.14 | 3.67 |
AKT 8811 | 2.12 | 2.13 | 2.13 | 57 | 57 | 57 | 105 | 137 | 121 | 3.14 | 3.67 | 3.14 |
PKV Trombay | 2.04 | 2.13 | 2.09 | 58 | 59 | 59 | 112 | 141 | 127 | 3.57 | 3.67 | 3.57 |
Hisar Manak | 1.55 | 1.64 | 1.60 | 45 | 49 | 47 | 111 | 156 | 134 | 3.10 | 3.52 | 3.10 |
Hisar Paras | 1.57 | 1.60 | 1.59 | 52 | 53 | 53 | 94 | 138 | 116 | 3.05 | 4.00 | 3.05 |
Hisar HO2-60 | 1.48 | 1.59 | 1.54 | 46 | 51 | 49 | 85 | 140 | 113 | 3.19 | 3.95 | 3.19 |
Pusa 9 | 2.27 | 2.38 | 2.33 | 67 | 68 | 68 | 84 | 132 | 108 | 3.48 | 3.91 | 3.48 |
BDN 2 | 2.13 | 2.24 | 2.19 | 66 | 65 | 66 | 75 | 136 | 106 | 3.52 | 4.00 | 3.52 |
JKM 7 | 2.21 | 2.41 | 2.31 | 65 | 67 | 66 | 69 | 128 | 99 | 3.57 | 3.85 | 3.57 |
Virsa Arhar1 | 2.06 | 2.31 | 2.19 | 57 | 63 | 60 | 78 | 117 | 98 | 3.52 | 3.52 | 3.52 |
SKNP 05-05 | 2.30 | 2.54 | 2.42 | 55 | 68 | 62 | 74 | 94 | 84 | 3.48 | 3.95 | 3.48 |
GAUT 93-17 | 2.26 | 2.30 | 2.28 | 72 | 74 | 73 | 70 | 84 | 77 | 3.76 | 3.90 | 3.76 |
DT 23 | 2.15 | 2.36 | 2.26 | 72 | 72 | 72 | 77 | 114 | 96 | 3.57 | 4.05 | 3.57 |
AAUT 2007-04 | 2.40 | 2.40 | 2.40 | 71 | 74 | 73 | 70 | 104 | 87 | 3.66 | 4.05 | 3.66 |
GT 101 | 2.24 | 2.26 | 2.25 | 68 | 64 | 66 | 80 | 115 | 98 | 3.67 | 4.00 | 3.67 |
T 15-15 | 2.34 | 2.42 | 2.38 | 68 | 73 | 71 | 72 | 109 | 91 | 3.62 | 4.00 | 3.62 |
BSMR 853 | 1.94 | 2.19 | 2.07 | 63 | 68 | 66 | 83 | 120 | 102 | 3.52 | 3.62 | 3.52 |
GT 1 | 2.28 | 2.35 | 2.32 | 65 | 64 | 65 | 73 | 106 | 90 | 3.86 | 4.29 | 3.86 |
AAUT 2007-10 | 2.31 | 2.40 | 2.36 | 66 | 70 | 68 | 74 | 103 | 89 | 4.24 | 4.43 | 4.24 |
Mean | 2.10 | 2.21 | 62 | 64 | 81 | 121 | 3.53 | 3.90 | ||||
SED | ||||||||||||
Zinc level (Zn) | 0.03 | 0.50 | 0.80 | 0.08 | ||||||||
Genotype (G) | 0.05 | 0.98 | 1.05 | 0.95 | ||||||||
LSD (p < 0.05) | ||||||||||||
Zinc level (Zn) | * | * | * | * | ||||||||
Genotype (G) | * | * | * | * | ||||||||
Zn x G | * | * | * | * |
Genotypes | 100 Seed Weight (g) | Seed Yield (t ha−1) | Seed Zn Concentration (mg kg−1) | Seed Zn Uptake (g ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low Zn | High Zn | Mean | Low Zn | High Zn | Mean | Low Zn | High Zn | Mean | Low Zn | High Zn | Mean | |
C11 | 9.10 | 10.50 | 9.55 | 1.76 | 2.42 | 2.09 | 30.2 | 42.0 | 36.1 | 53.2 | 102 | 77.4 |
ICPL 87119 | 9.20 | 9.10 | 9.15 | 2.54 | 3.13 | 2.84 | 29.4 | 42.4 | 35.9 | 74.6 | 133 | 104 |
AKT 8811 | 10.0 | 9.90 | 9.95 | 1.58 | 2.08 | 1.83 | 32.7 | 36.1 | 34.4 | 51.6 | 75.0 | 63.3 |
PKV Trombay | 9.90 | 10.3 | 10.1 | 1.24 | 1.53 | 1.39 | 31.7 | 54.6 | 43.2 | 39.3 | 83.6 | 61.4 |
Hisar Manak | 8.10 | 8.80 | 8.45 | 1.34 | 1.85 | 1.59 | 34.9 | 53.4 | 44.2 | 46.6 | 98.7 | 72.7 |
Hisar Paras | 8.20 | 8.40 | 8.30 | 1.26 | 1.73 | 1.49 | 38.3 | 45.3 | 41.8 | 48.3 | 78.2 | 63.2 |
Hisar HO2-60 | 8.00 | 8.20 | 8.10 | 1.33 | 1.80 | 1.56 | 39.1 | 54.1 | 46.6 | 51.9 | 97.4 | 74.7 |
Pusa 9 | 10.3 | 11.1 | 10.7 | 1.69 | 1.98 | 1.83 | 27.3 | 35.9 | 31.6 | 46.2 | 70.9 | 58.6 |
BDN 2 | 9.60 | 10.5 | 10.0 | 2.43 | 2.83 | 2.63 | 30.5 | 40.2 | 35.4 | 74.1 | 114 | 94.0 |
JKM 7 | 9.30 | 10.0 | 9.65 | 1.79 | 2.60 | 2.20 | 32.7 | 41.7 | 37.2 | 58.6 | 108 | 83.5 |
Virsa Arhar 1 | 9.20 | 9.40 | 9.30 | 2.13 | 2.61 | 2.37 | 35.6 | 42.5 | 39.1 | 75.8 | 111 | 93.3 |
SKNP 05-05 | 10.0 | 10.7 | 10.3 | 1.67 | 1.96 | 1.81 | 30.5 | 37.2 | 33.9 | 50.8 | 72.7 | 61.8 |
GAUT 93-17 | 9.90 | 9.60 | 9.75 | 1.67 | 2.09 | 1.88 | 32.8 | 44.9 | 38.9 | 54.9 | 93.8 | 74.4 |
DT 23 | 10.4 | 11.1 | 10.8 | 1.93 | 2.08 | 2.00 | 30.1 | 42.9 | 36.5 | 57.9 | 89.2 | 73.6 |
AAUT 2007-04 | 11.3 | 13.1 | 12.2 | 1.50 | 1.73 | 1.61 | 30.4 | 40.9 | 35.7 | 45.4 | 70.6 | 58.0 |
GT 101 | 9.70 | 9.90 | 9.80 | 1.50 | 1.79 | 1.64 | 31.6 | 35.2 | 33.4 | 47.4 | 62.9 | 55.2 |
T 15-15 | 10.0 | 10.2 | 10.1 | 1.79 | 1.94 | 1.86 | 35.4 | 47.8 | 41.6 | 63.4 | 92.5 | 77.9 |
BSMR 853 | 10.1 | 10.5 | 10.3 | 1.79 | 2.05 | 1.92 | 33.7 | 44.4 | 39.1 | 60.3 | 91.1 | 75.7 |
GT 1 | 10.3 | 10.6 | 10.4 | 1.64 | 1.98 | 1.81 | 32.5 | 40.7 | 36.6 | 53.4 | 80.5 | 66.9 |
AAUT 2007-10 | 10.4 | 10.8 | 10.6 | 1.54 | 2.29 | 1.92 | 28.6 | 37.9 | 33.3 | 43.9 | 86.9 | 65.4 |
Mean | 9.65 | 10.1 | 1.71 | 2.12 | 32.4 | 43.0 | 54.9 | 90.6 | ||||
SED | ||||||||||||
Zinc level (Zn) | 0.10 | 0.11 | 0.38 | 0.25 | ||||||||
Genotype (G) | 0.15 | 0.18 | 1.15 | 1.05 | ||||||||
LSD (p < 0.05) | ||||||||||||
Zinc level (Zn) | * | * | * | * | ||||||||
Genotype (G) | * | * | * | * | ||||||||
Zn x G | NS | NS | NS | NS |
Plant Height | Branches Plant−1 | Pods Plant−1 | Seeds Pod−1 | 100 Seed Weight | Seed Yield | Seed Zn Concentration | Seed Zn Uptake | |
---|---|---|---|---|---|---|---|---|
Plant height | 1.000 | |||||||
Branches plant−1 | 0.845 ** | 1.000 | ||||||
Pods plant−1 | −0.244 | -0.310 | 1.000 | |||||
Seeds pod−1 | 0.521 ** | 0.526 ** | 0.206 | 1.000 | ||||
100 seed weight | 0.770 ** | 0.752 ** | −0.050 | 0.473 ** | 1.000 | |||
Seed yield | 0.399 * | 0.294 | 0.243 | 0.398 * | 0.113 | 1.000 | ||
Seed Zn concentration | −0.254 | −0.191 | 0.753 ** | 0.242 | −0.133 | 0.196 | 1.000 | |
Seed Zn uptake | 0.158 | 0.113 | 0.605 ** | 0.431 ** | 0.012 | 0.832 ** | 0.699 ** | 1.000 |
Genotypes | Seed Yield Efficiency Index (Mean ± Standard Error of Mean) | Zn Uptake Efficiency Index (Mean ± Standard Error of Mean) |
---|---|---|
C11 | 72.9 ± 1.35 | 52.4 ± 1.11 |
ICPL 87119 | 81.1 ± 0.97 | 56.2 ± 1.24 |
AKT 8811 | 76.0 ± 1.05 | 68.8 ± 0.86 |
PKV Trombay | 80.9 ± 2.14 | 47.0 ± 2.45 |
Hisar Manak | 72.3 ± 1.52 | 47.2 ± 1.58 |
Hisar Paras | 73.0 ± 1.42 | 61.7 ± 1.32 |
Hisar HO2-60 | 73.7 ± 0.89 | 53.3 ± 1.11 |
Pusa 9 | 85.7 ± 1.45 | 65.2 ± 0.68 |
BDN 2 | 85.8 ± 1.63 | 65.1 ± 1.14 |
JKM 7 | 69.0 ± 1.24 | 54.1 ± 1.63 |
Virsa Arhar-1 | 81.7 ± 1.54 | 68.4 ± 1.25 |
SKNP 05-05 | 85.3 ± 1.23 | 69.9 ± 1.18 |
GAUT 93-17 | 80.1 ± 0.86 | 58.5 ± 1.17 |
DT 23 | 92.5 ± 1.27 | 64.9 ± 2.14 |
AAUT 2007-04 | 86.6 ± 1.12 | 64.4 ± 1.14 |
GT 101 | 83.9 ± 2.14 | 75.4 ± 1.58 |
T 15-15 | 92.5 ± 1.46 | 68.5 ± 1.43 |
BSMR 853 | 87.2 ± 0.96 | 66.2 ± 1.34 |
GT 1 | 83.1 ± 1.27 | 66.3 ± 1.15 |
AAUT 2007-10 | 67.0 ± 1.47 | 50.5 ± 1.14 |
Mean | 80.5 | 61.2 |
SED | 1.6 | 1.8 |
LSD (p < 0.05) | 4.53 | 3.73 |
Efficient and Responsive (ER) | Efficient and Non-Responsive (ENR) | Inefficient and Responsive (IER) | Inefficient and Non-Responsive (IENR) |
---|---|---|---|
Virsa Arhar1, GT-1, GT-101, SKNP 05-05, BDN-2, AAUT 2007-04, BSMR 853, T 15-15, DT 23, Pusa 9 | ICPL 87119, PKV Trombay | AKT 8811, Hisar Paras | AAUT 2007-10, JKM 7, Hisar Manak, C 11, Hisar HO2-60, GAUT 93-17 |
Genotypes | Grain Zinc Concentration (mg kg−1) (Mean ± Standard Error of Mean) |
---|---|
C11 | 32.0 ± 0.89 |
ICPL 87119 | 30.4 ± 0.56 |
AKT 8811 | 33.7 ± 1.11 |
PKV Trombay | 33.0 ± 0.98 |
Hisar Manak | 35.5 ± 1.01 |
Hisar Paras | 38.7 ± 0.54 |
Hisar HO2-60 | 40.0 ± 1.47 |
Pusa 9 | 27.8 ± 0.58 |
BDN 2 | 32.0 ± 1.14 |
JKM 7 | 33.4 ± 0.97 |
Virsa Arhar1 | 37.5 ± 1.52 |
SKNP 05-05 | 31.8 ± 1.21 |
GAUT 93-17 | 33.1 ± 2.21 |
DT 23 | 31.4 ± 1.46 |
AAUT 2007-04 | 30.9 ± 0.98 |
GT 101 | 32.5 ± 1.18 |
T 15-15 | 36.4 ± 1.64 |
BSMR 853 | 34.2 ± 1.47 |
GT 1 | 33.4 ± 2.10 |
AAUT 2007-10 | 29.5 ± 1.15 |
SED | 0.571 |
LSD | 2.065 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behera, S.K.; Shukla, A.K.; Tiwari, P.K.; Tripathi, A.; Singh, P.; Trivedi, V.; Patra, A.K.; Das, S. Classification of Pigeonpea (Cajanus cajan (L.) Millsp.) Genotypes for Zinc Efficiency. Plants 2020, 9, 952. https://doi.org/10.3390/plants9080952
Behera SK, Shukla AK, Tiwari PK, Tripathi A, Singh P, Trivedi V, Patra AK, Das S. Classification of Pigeonpea (Cajanus cajan (L.) Millsp.) Genotypes for Zinc Efficiency. Plants. 2020; 9(8):952. https://doi.org/10.3390/plants9080952
Chicago/Turabian StyleBehera, Sanjib Kumar, Arvind Kumar Shukla, Pankaj Kumar Tiwari, Ajay Tripathi, Pooja Singh, Vivek Trivedi, Ashok Kumar Patra, and Soumitra Das. 2020. "Classification of Pigeonpea (Cajanus cajan (L.) Millsp.) Genotypes for Zinc Efficiency" Plants 9, no. 8: 952. https://doi.org/10.3390/plants9080952
APA StyleBehera, S. K., Shukla, A. K., Tiwari, P. K., Tripathi, A., Singh, P., Trivedi, V., Patra, A. K., & Das, S. (2020). Classification of Pigeonpea (Cajanus cajan (L.) Millsp.) Genotypes for Zinc Efficiency. Plants, 9(8), 952. https://doi.org/10.3390/plants9080952