Effects of Interspecific Chromosome Substitution in Upland Cotton on Cottonseed Micronutrients
Abstract
:1. Introduction
2. Results
2.1. Analysis of Variance and Mean Values
2.2. Correlation and Distribution of Micronutrients
3. Discussion
4. Materials and Methods
4.1. Chromosome Substitution Cotton Lines (CS)
4.2. Seed Mineral Nutrient Analyses
4.3. Determination of Seed B and Fe
4.4. Experimental Design and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, Z.; Shankle, M.; Zhang, H.; Way, T.R.; Tewolde, H.; Uchimiya, M. Mineral composition of cottonseed is affected by fertilization management practices. Agron. J. 2013, 105, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.J.; Lopez, A.D. Measuring the global burden of disease. N. Engl. J. Med. 2013, 369, 448–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessells, K.R.; Brown, K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Descalsota-Empleo, G.I.; Amparadoa, G.I.; Inabangan-Asilo, A.; Tesoro, M.A.; Stangoulisc, F.; Reinkea, J.; Swamya, R. Genetic mapping of QTL for agronomic traits and grain mineral elements in rice. Crop J. 2019, 7, 560–572. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Waters, B.M.; Grusak, M.A. Whole plant mineral partitioning throughout the life cycle in the ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3 of Arabidopsis thaliana. New Phytol. 2008, 177, 389–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. The State of Food Security and Nutrition in the World. the International Community is Committed to Ending Hunger and all Forms of Malnutrition Worldwide by 2030. Available online: http://fenix.fao.org/faostat/internal/en/#home (accessed on 29 October 2019).
- Stein, A.J. Global impacts of human mineral malnutrition. Plant Soil 2010, 335, 133–154. [Google Scholar] [CrossRef]
- Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lönnerdal, B.; Ruel, M.T.; Sandtröm, B.; Wasantwisut, E.; Hotz, C.; et al. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar] [PubMed]
- Brown, K.H.; Peerson, J.M.; Baker, S.K.; Hess, S.Y. Preventive zinc supplementation among infants, preschoolers, and older prepubertal children. Food Nutr. Bull. 2009, 30, S12–S40. [Google Scholar] [CrossRef]
- Tan, G.Z.; Das Bhowmik, S.S.; Hoang, T.M.; Karbaschi, M.R.; Johnson, A.A.; Williams, B.; Mundree, S.G. Finger on the pulse: Pumping iron into chickpea. Front. Plant Sci. 2017, 8, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wu, B.; Singh, R.P.; Velu, G. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. J. Cereal Sci. 2019, 88, 57–64. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Worldwide Prevalence of Anaemia 1993–2005; De Benoist, B., McLean, E.I., Eds.; WHO: Geneva, Switzerland; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2008; ISBN 978-92-4-159665-7.
- World Health Organization (WHO). Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; WHO: Geneva, Switzerland, 2009; pp. 32–54. Available online: http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_annex.pdf (accessed on 3 February 2020).
- Zhang, L.H.; Byrne, P.F.; Pilon-Smits, E.A.H. Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol. 2006, 170, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Filatov, V.; Dowdle, J.; Smirnoff, N.; Ford-Lloyd, B.; Newbury, H.J.; Macnair, M.R. A quantitative trait loci analysis of zinc hyperaccumulation in Arabidopsis halleri. New Phytol. 2007, 174, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Harada, E.; Vess, C.; von Roepenack-Lahaye, E.; Clemens, S. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J. 2004, 37, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Maldonado, S.H.; Martínez, O.; Acosta-Gallegos, J.A.; Guevara-Lara, F.; Paredes-López, O. Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci. 2003, 43, 1029–1035. [Google Scholar] [CrossRef]
- Gelin, J.R.; Forster, S.; Grafton, K.F.; McClean, P.E.; Rojas-Cifuentes, G.A. Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci. 2007, 47, 1361–1366. [Google Scholar] [CrossRef]
- Stangoulis, J.; Huynh, B.L.; Welch, R.; Choi, E.Y.; Graham, R. Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 2007, 154, 289–294. [Google Scholar] [CrossRef]
- Vreugdenhil, D.; Aarts, M.G.M.; Koornneef, M.; Nelissen, H.; Ernst, W.H.O. Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ. 2004, 27, 828–839. [Google Scholar] [CrossRef]
- Bellaloui, N.; Khandaker, L.; Akond, M.; Kantartzi, S.K.; Meksem, K.; Mengistu, A.; Lightfoot, D.A.; Kassem, M.A. Identification of QTL underlying seed micronutrients accumulation in ‘MD 96-5722’ by ‘Spencer’ recombinant inbred lines of soybean. Atlas J. Plant Biol. 2015, 1, 39–49. [Google Scholar] [CrossRef]
- Waters, B.M.; Grusak, M.A. Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol. 2008, 179, 1033–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grusak, M.A.; DellaPenna, D. Improving the nutrient composition of plants to enhance human nutrition and health. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 133–161. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Yang, M.; Hu, Y.; Liao, Y.; Shi, L.; Xu, F. Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann. Bot. 2010, 105, 1221–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H. Boron in plant biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- Miwa, K.; Takano, J.; Fujiwara, T. Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. Plant J. 2006, 46, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Takano, J.; Wada, M.; Ludewig, U.; Schaaf, G.; von Wiren, N.; Fujiwara, T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 2006, 18, 1498–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Shi, L.; Zhang, C.; Xu, F. Cloning and characterization of boron transporters in Brassica napus. Mol. Biol. Rep. 2011, 39, 1963–1973. [Google Scholar] [CrossRef]
- Kasajima, I.; Ide, Y.; Yokota, H.M.; Fujiwara, T. WRKY6 is involved in the response to boron deficiency in Arabidopsis thaliana. Physiol. Plant. 2010, 139, 80–92. [Google Scholar] [CrossRef]
- Bentsink, L.; Yuan, K.; Koornneef, M.; Vreugdenhil, D. The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor. Appl. Genet. 2003, 106, 1234–1243. [Google Scholar] [CrossRef]
- Garcia-Oliveira, A.L.; Tan, L.; Fu, Y.; Sun, C. Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J. Integr. Plant Biol. 2009, 51, 84–92. [Google Scholar] [CrossRef]
- Peleg, Z.; Cakmak, I.; Ozturk, L. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor. Appl. Genet. 2009, 119, 353–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankaran, R.; Huguet, T.; Grusak, M. Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula. Theor. Appl. Genet. 2009, 119, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, J.; Li, R.; Shi, L.; Zhang, C.; Long, Y.; Xu, F.; Meng, J. Analysis of genetic factors that control shoot mineral concentrations in rapeseed (Brassica napus) in different boron environments. Plant Soil 2009, 320, 255–266. [Google Scholar] [CrossRef]
- Diers, B.W.; Cianzio, S.R.; Shoemaker, R.C. Possible identification of quantitative trait loci affecting iron efficiency in soybean. J. Plant Nutr. 1992, 15, 2127–2136. [Google Scholar] [CrossRef]
- Lu, K.; Li, L.; Zheng, X.; Zhang, Z.; Mou, T.; Z Hu, Z. Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J. Genet. 2008, 87, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Paran, I.; Zamir, D. Quantitative traits in plants: Beyond the QTL. Trends Genet. 2003, 19, 303–306. [Google Scholar] [CrossRef]
- Blair, M.W.; Sandoval, T.A.; Caldas, G.V.; Beebe, S.E.; Páez, M.I. Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean. Crop Sci. 2009, 49, 237–246. [Google Scholar] [CrossRef]
- Blair, M.W.; Wu, X.; Bhandari, D.; Astudillo, C. Genetic dissection of ICP-detected nutrient accumulation in the whole seed of common bean (Phaseolus vulgaris L.). Front. Plant Sci. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Le Gouis, J. Genetic improvement of nutrient use efficiency in wheat. In Molecular and Physiological Basis of Nutrient Use Efficiency in Crops; Hawkesford, M.J., Barraclough, P., Eds.; John Wiley & Sons: Chichester, UK, 2011; pp. 123–138. [Google Scholar]
- Wu, J.; Jenkins, J.N.; McCarty, J.C.; Thaxton, P. Seed trait evaluation of Gossypium barbadense L. chromosomes/arms in a G. hirsutum L. background. Euphytica 2009, 167, 371–380. [Google Scholar] [CrossRef]
- Wu, J.; McCarty, J.C.; Jenkins, J.N. Cotton chromosome substitution lines crossed with cultivars: Genetic model evaluation and seed trait analyses. Theor. Appl. Genet. 2010, 120, 1473–1483. [Google Scholar] [CrossRef]
- Saha, S.; Wu, J.; Jenkins, J.N.; McCarty, J.C.; Gutie´rrez, O.; Stelly, D.M.; Percy, R.G.; Raska, D.A. Effect of chromosome substitutions from Gossypium barbadense L. 3–79 into G. hirsutum L. TM-1 on agronomic and fiber traits. J. Cotton Sci. 2004, 8, 162–169. [Google Scholar]
- Saha, S.; Jenkins, J.N.; Wu, J.; McCarty, J.C.; Gutierrez, O.; Percy, R.C.; Cantrell, R.G.; Stelly, D.M. Effects of chromosome specific introgression in upland cotton on fiber and agronomic traits. Genetics 2006, 172, 1927–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelly, D.M.; Saha, S.; Raska, D.A.; Jenkins, J.N.; McCarty, J.C.; Gutierrez, O. Registration of 17 germplasm lines of upland cotton (Gossypium hirsutum), each with a different pair of G. barbadense chromosome or chromosome arms substituted for the respective G. hirsutum chromosome or chromosome arms. Crop Sci. 2005, 45, 2663–2665. [Google Scholar] [CrossRef]
- Jenkins, J.N.; Wu, J.; McCarty, J.C.; Saha, S.; Gutierrez, O.; Hayes, R.; Stelly, D.M. Genetic evaluation for thirteen chromosome substitution lines crossed with five commercial cultivars: I. Yield traits. Crop Sci. 2006, 46, 1169–1178. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J.N.; McCarty, J.C.; Wu, J.; Saha, S.; Gutierrez, O.; Hayes, R.; Stelly, D.M. Genetic evaluation of thirteen chromosome substitution lines crossed with five commercial cultivars: II. Fiber quality traits. Crop Sci. 2007, 47, 561–572. [Google Scholar] [CrossRef] [Green Version]
- McCarty, J.C.; Wu, J.; Saha, S.; Jenkins, J.N.; Hayes, R. Effects of chromosome 5sh from Gossypium barbadense L. on flower production in G. hirsutum L. Euphytica 2006, 152, 99–107. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, Y.X.; Zhang, X.W.; Zhao, J.; Song, X.; Li, Y.; Li, X.; Sun, R.; Koornneef, M.; Aarts, M.G.M.; et al. Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. Pekinensis). Plant Soil 2008, 310, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhu, J.; Ji, D.; Xu, F. Genetic analysis of direct and maternal effects of seed traits in upland cotton (in Chinese). Acta Agron. Sin. 1995, 21, 659–664. [Google Scholar]
- Wang, G.; Zhu, J.; Zang, R.; Xu, F.; Ji, D. Analysis of covariance components between seed and agronomy traits in upland cotton. Acta Gossypii Sin. 1996, 8, 295–300. [Google Scholar]
- Wang, G.; Zhu, J.; Zang, R.; Xu, F.; Ji, D. Analysis of genetic correlation among seed nutrient quality traits and seed physical traits in upland cotton. J. Zhejiang Agric. Univ. 1996, 22, 585–590. [Google Scholar]
- Zhu, J.; Weir, B.S. Analysis of cytoplasmic and maternal effects I. A genetic model for diploid plant seeds and animals. Theor. Appl. Genet. 1994, 89, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Weir, B.S. Analysis of cytoplasmic and maternal effects II. Genetic models for triploid endosperms. Theor. Appl. Genet. 1994, 89, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Z Rengel, Z.; Marschner, P. Nutrient availability and management in the rhizosphere: Exploiting genotypic differences. New Phytol. 2005, 168, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Rengel, Z. Genotypic differences in micronutrient use efficiency in crops. Commun. Soil Sci. Plant Anal. 2001, 32, 1163–1186. [Google Scholar] [CrossRef]
- Sadeghzadeh, B.; Rengel, Z. Zinc in Soils and Crop Nutrition. In The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops, 1st ed.; Hawkesford, M.J., Barraclough, P., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 335–375. [Google Scholar]
- Rehman, A.; Farooq, M.; Ozturk, L.; Asif, M.; Siddique, K.H.M. Zinc nutrition in wheat-based cropping systems. Plant Soil 2018, 422, 283–315. [Google Scholar] [CrossRef]
- Saha, S.; Stelly, D.M.; Makamov, A.K.; Ayubov, M.; Raska, D.; Gutierrez, O.A.; Manchali, S.; Jenkins, J.N.; Deng, D.D.; Abdurakhmonov, I.Y. Molecular confirmation of Gossypium hirsutum chromosome substitution lines. Genetica 2016, 144, 289–306. [Google Scholar] [CrossRef]
- Saha, S.; Wu, J.; Jenkins, J.N.; Mccarty, J.C., Jr.; Campbell, B.T.; Hayes, R.W.; Stelly, D.M. Tri-species shuffling of chromosomes to study the effects on fiber traits using chromosome substitution lines. Crop Sci. 2017, 57, 1211–1226. [Google Scholar] [CrossRef]
- Bourland, F.M.; Jones, D.C. Registration of ′UA48′ cotton cultivar. J. Plant Reg. 2012, 6, 15–18. [Google Scholar] [CrossRef]
- Bellaloui, N.; Mengistu, A.; Walker, R.R.; Young, L.D. Soybean seed composition affected by seeding rates and row spacing in the Midsouth USA. Crop Sci. 2014, 54, 1782–1795. [Google Scholar] [CrossRef]
- Lohse, G. Microanalytical azomethine-H method for boron determination in plant tissue. Comm. Soil Sci. Plant Anal. 1982, 13, 127–134. [Google Scholar] [CrossRef]
- Dordas, C. Foliar boron application affects lint and seed yield and improves seed quality of cotton grown on calcareous soils. Nutr. Cycl. Agroecosyst. 2006, 76, 19–28. [Google Scholar] [CrossRef]
- John, M.K.; Chuah, H.H.; Neufeld, J.H. Application of improved azomethine-h method to the determination of boron in soils and plants. Anal. Lett. 1975, 8, 559–568. [Google Scholar] [CrossRef]
- Bandemer, S.L.; Schaible, P.J. Determination of iron. A study of the ophenanthroline method. Ind. Eng. Chem. Anal. Ed. 1944, 16, 317–319. [Google Scholar] [CrossRef]
- Loeppert, R.L.; Inskeep, W.P. Colorimetric determination of ferrous iron and ferric iron by the 1,10-phenanthroline method. In Methods of Soil Analysis: Part 3, Chemical Methods; Bigham, J.M., Ed.; Soil Science Society of America (SSSA): Madison, WI, USA, 1996; pp. 659–661. [Google Scholar]
- Bellaloui, N.; Smith, J.R.; Gillen, A.M.; Ray, J.D. Effects of maturity, genotypic background, and temperature on seed mineral composition in near isogenic soybean lines in the early soybean production system. Crop Sci. 2011, 51, 1161–1171. [Google Scholar] [CrossRef]
- Statistical Analysis Systems; SAS Institute: Cary, NC, USA, 2002–2012.
- Joshi, D.; Sharma, A.; Yadav, T.; Gupta, P.S. Role of Micronutrients in Animal Health. 2016. Available online: https://www.biotecharticles.com/Agriculture-Article/Role-of-Micronutrients-in-Animal-health-3664.html (accessed on 10 August 2020).
B | Cu | Fe | Mn | Ni | Zn | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Effect | DF a | F | P b | F | P | F | P | F | P | F | P | F | P |
Location | 1 | 10.7 | 0.02 | 5.9 | 0.05 | 6.75 | 0.01 | 16.9 | 0.006 | 124.9 | <0.0001 | 147 | <0.0001 |
Genotype | 10 | 44.2 | <0.0001 | 25.5 | <0.0001 | 54.2 | <0.0001 | 29.4 | <0.0001 | 10.91 | <0.0001 | 64.7 | <0.0001 |
Location*G | 10 | 10.2 | <0.0001 | 39.44 | <0.0001 | 26.3 | <0.0001 | 30.0 | <0.0001 | 8.23 | <0.0001 | 31.6 | <0.0001 |
Residual | 0.19 | 0.0822 | 2.98 | 0.73 | 0.043 | 25.0 |
B | Cu | Fe | Mn | Ni | Zn | |
---|---|---|---|---|---|---|
Genotype | mg kg−1 | |||||
CS-B02 | 12.46 de | 5.02 g | 45.98 c | 16.16 g | 2.24 e | 75.33 a |
CS-B04 | 13.12 b | 5.14 g | 37.45 g | 15.70 h | 2.23 e | 63.03 b |
CS-B08sh | 12.41 e | 4.81 h | 41.77 e | 16.67 f | 2.46 d | 63.90 b |
CS-M02 | 10.35 g | 6.13 e | 42.67 e | 13.72 i | 2.33 de | 75.20 a |
CS-M04 | 11.45 f | 5.72 f | 44.03 d | 17.16 e | 1.63 f | 58.09 c |
CS-M08sh | 13.63 a | 5.82 f | 36.23 h | 18.32 cd | 2.42 d | 53.20 d |
CS-T02 | 12.43 de | 7.65 a | 54.77 b | 19.64 b | 2.60 bc | 53.45 d |
CS-T04 | 13.67 a | 6.63 c | 56.69 a | 21.13 a | 2.86 a | 73.90 a |
CS-T08sh | 12.59 d | 6.40 d | 35.88 h | 17.01 ef | 2.63 b | 35.47 g |
AM UA48 | 12.77 c | 6.72 c | 36.09 h | 18.69 c | 2.60 bc | 44.20 e |
TM-1 | 12.35 e | 7.07 b | 39.33 f | 18.21 d | 2.45 d | 42.14 f |
B | Cu | Fe | Mn | Ni | Zn | |
---|---|---|---|---|---|---|
Genotype | mg kg−1 | |||||
CS-B02 | 12.80 d | 5.48 e | 41.81 ef | 13.44 g | 1.29 e | 76.82 c |
CS-B04 | 12.65 de | 5.57 de | 41.41 f | 16.75 d | 1.18 f | 48.76 f |
CS-B08sh | 11.38 g | 5.61 d | 45.96 b | 13.23 g | 1.18 f | 79.53 c |
CS-M02 | 11.45 g | 5.65 d | 45.91 b | 19.82 a | 1.33 e | 76.85 c |
CS-M04 | 11.98 f | 6.68 a | 42.46 de | 15.50 e | 1.58 c | 95.55 a |
CS-M08sh | 15.16 a | 6.25 c | 42.52 d | 17.98 b | 1.44 d | 96.36 a |
CS-T02 | 11.24 g | 4.43 g | 43.54 c | 13.05 g | 1.13 fg | 58.30 e |
CS-T04 | 13.71 c | 6.21 c | 49.75 a | 20.01 a | 1.52 c | 98.28 a |
CS-T08sh | 12.43 e | 6.44 b | 45.60 b | 18.30 b | 2.15 a | 39.45 g |
AM UA48 | 14.35 b | 4.68 f | 41.28 f | 17.49 c | 1.83 b | 61.83 d |
TM-1 | 13.6 c | 6.43 b | 41.18 f | 14.23 f | 1.10 g | 90.93 b |
Nutrient | B | Cu | Fe | Mn | Ni |
---|---|---|---|---|---|
Cu | R = 0.00596 | ||||
P = NS b | |||||
Fe | R = 0.02954 | 0.29195 | |||
P = NS | * | ||||
Mn | R = 0.59727 | 0.50881 | 0.40371 | ||
P = *** | *** | ** | |||
Ni | R = 0.31024 | 0.31225 | 0.2099 | 0.31795 | |
P = * | * | NS | * | ||
Zn | R = −0.17679 | −0.42992 | 0.49447 | −0.25791 | 0.39767 |
P = NS | ** | *** | NS | * |
Nutrient | B | Cu | Fe | Mn | Ni |
---|---|---|---|---|---|
Cu | R = 0.21738 | ||||
P = NS | |||||
Fe | R = −0.17041 | 0.19739 | |||
P = NS | NS | ||||
Mn | R = 0.36405 | 0.31066 | 0.41148 | ||
P = * | * | ** | |||
Ni | R = 0.23750 | 0.21287 | 0.11357 | 0.49948 | |
P = NS | NS | NS | *** | ||
Zn | R = 0.31039 | 0.43265 | 0.15022 | 0.05613 | −0.27541 |
P = * | ** | NS | NS | * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellaloui, N.; Saha, S.; Tonos, J.L.; Scheffler, J.A.; Jenkins, J.N.; McCarty, J.C.; Stelly, D.M. Effects of Interspecific Chromosome Substitution in Upland Cotton on Cottonseed Micronutrients. Plants 2020, 9, 1081. https://doi.org/10.3390/plants9091081
Bellaloui N, Saha S, Tonos JL, Scheffler JA, Jenkins JN, McCarty JC, Stelly DM. Effects of Interspecific Chromosome Substitution in Upland Cotton on Cottonseed Micronutrients. Plants. 2020; 9(9):1081. https://doi.org/10.3390/plants9091081
Chicago/Turabian StyleBellaloui, Nacer, Sukumar Saha, Jennifer L. Tonos, Jodi A. Scheffler, Johnie N. Jenkins, Jack C. McCarty, and David M. Stelly. 2020. "Effects of Interspecific Chromosome Substitution in Upland Cotton on Cottonseed Micronutrients" Plants 9, no. 9: 1081. https://doi.org/10.3390/plants9091081
APA StyleBellaloui, N., Saha, S., Tonos, J. L., Scheffler, J. A., Jenkins, J. N., McCarty, J. C., & Stelly, D. M. (2020). Effects of Interspecific Chromosome Substitution in Upland Cotton on Cottonseed Micronutrients. Plants, 9(9), 1081. https://doi.org/10.3390/plants9091081