Uptake of Trace Elements in the Water Fern Azolla filiculoides after Short-Term Application of Chestnut Wood Distillate (Pyroligneous Acid)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Characteristics of Wood Distillate Used
4.3. Application of Wood Distillate
4.4. Trace Element Analyses
4.5. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Igbedioh, S.O. Effects of agricultural pesticides on humans, animals, and higher plants in developing countries. Arch. Environ. Health 1991, 46, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Effects of Pesticides on Environment. In Plant, Soil and Microbes; Hakeem, K., Akhtar, M., Abdullah, S., Eds.; Springer International: Cham, Switzerland, 2016; pp. 253–269. [Google Scholar]
- Riah, W.; Laval, K.; Laroche-Ajzenberg, E.; Mougin, C.; Latour, X.; Trinsoutrot-Gattin, I. Effects of pesticides on soil enzymes: A review. Environ. Chem. Lett. 2014, 12, 257–273. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgera, E.; Caro, C.B.; Durán, G.M. Organic Agriculture and the Law; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2012; ISBN 978-92-5-107220-2. [Google Scholar]
- United Nations. Organic Agriculture and the Sustainable Development Goals. IFOAM Organics International. 2019. Available online: https://www.eosta.com/sites/www.eosta.com/files/documenten/nm19_329_report_nm_lr.pdf (accessed on 16 August 2020).
- Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides; Publications Office of the European Union: Strasbourg, France, 2009.
- Regulation (EC) No 1107/2009 the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC; Publications Office of the European Union: Strasbourg, France, 2009.
- Food Quality Protection Act, Public Law 104-170. United States Environmental Protection Agency. 1996. Available online: https://www.epa.gov/laws-regulations/summary-food-quality-protection-act (accessed on 16 August 2020).
- European Commission. Towards a European knowledge-based bioeconomy-York University 2004. In Workshop Conclusion on the Use of Plant Biotechnology for the Production of Industrial Bio-Based Products; European Commission: Brussels, Belgium, 2005; ISBN 92-894-8778-X. [Google Scholar]
- Bridgwater, A.V. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 2003, 91, 87–102. [Google Scholar] [CrossRef]
- Lewandowski, M.; Milchert, E. Modern technology of dry distillation of wood. Chemik 2011, 65, 1301–1306. [Google Scholar]
- Norton, M.; Baldi, A.; Buda, V.; Carli, B.; Cudlin, P.; Jones, M.B.; Korhola, A.; Michalski, R.; Novo, F.; Oszlany, J.; et al. Serious mismatches continue between science and policy in forest bioenergy. GBC-Bioenergy Bioprod. Sustain. Bioecon. 2019, 11, 1256–1263. [Google Scholar] [CrossRef] [Green Version]
- Tiilikkala, K.; Fagernäs, L.; Tiilikkala, J. History and use of wood pyrolysis liquids as biocide and plant protection product. Open Agric. J. 2012, 4, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass waste utilisation in low-carbon products: Harnessing a major potential resource. NPJ Clim. Atmos. Sci. 2019, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fagernäs, L.; Kuoppala, E.; Tiilikkala, K.; Oasmaa, A. Chemical composition of birch wood slow pyrolysis products. Energy Fuels 2012, 26, 1275–1283. [Google Scholar] [CrossRef]
- Lee, S.H.; H’ng, P.S.; Lee, A.N.; Sajap, A.S.; Tey, B.T.; Salmiah, U. Production of pyroligneous acid from lignocellulosic biomass and their effectiveness against biological attacks. J. Appl. Sci. (Faisalabad) 2010, 10, 2440–2446. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Jiang, J.; He, J.; Sun, K.; Sun, Y. Effect of pyrolysis temperature on the characteristics of wood vinegar derived from Chinese fir waste: A comprehensive study on its growth regulation performance and mechanism. ACS Omega 2019, 4, 19054–19062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, S.; Zakaria, Z.A. Pyroligneous acid—The smoky acidic liquid from plant biomass. Appl. Microbiol. Biotechnol. 2015, 99, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Theapparat, Y.; Chandumpai, A.; Faroongsarng, D. Physicochemistry and utilization of wood vinegar from carbonization of tropical biomass waste. In Tropical Forests; New Edition; Sudarshana, P., Nageswara-Rao, M., Soneji, J.R., Eds.; IntechOpen: London, UK, 2018; pp. 163–183. [Google Scholar]
- Grewal, A.; Abbey, L.; Gunupuru, L.R. Production, prospects and potential application of pyroligneous acid in agriculture. J. Anal. Appl. Pyrolysis 2018, 135, 152–159. [Google Scholar] [CrossRef]
- Loo, A.; Jain, K.; Darah, I. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem. 2008, 107, 1151–1160. [Google Scholar] [CrossRef]
- Ma, C.; Song, K.; Yu, J.; Yang, L.; Zhao, C.; Wang, W.; Zu, G.; Zu, Y. Pyrolysis process and antioxidant activity of pyroligneous acid from Rosmarinus officinalis leaves. J. Anal. Appl. Pyrolysis 2013, 104, 38–47. [Google Scholar] [CrossRef]
- Wei, Q.; Ma, X.; Zhao, Z.; Zhang, S.; Liu, S. Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell. J. Anal. Appl. Pyrolysis 2010, 88, 149–154. [Google Scholar] [CrossRef]
- Matsushita, Y.I.; Sugamoto, K.; Matsui, T. Antimicrobial effect of the wood vinegar from Cryptomeria japonica sapwood on plant pathogenic microorganisms. J. Microbiol. Biotechnol. 2005, 15, 1106–1109. [Google Scholar]
- Mmojieje, J.; Hornung, A. The potential application of pyroligneous acid in the UK agricultural industry. J. Crop. Improv. 2015, 29, 228–246. [Google Scholar] [CrossRef]
- Masum, S.M.; Malek, M.; Mandal, M.S.H.; Haque, M.N.; Akther, Z. Influence of plant extracted pyroligneous acid on transplanted aman rice. World J. Exp. Biosci. 2013, 4, 31–34. [Google Scholar]
- Mungkunkamchao, T.; Kesmala, T.; Pimratch, S.; Toomsan, B.; Jothityangkoon, D. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Sci. Hortic. 2013, 154, 66–72. [Google Scholar] [CrossRef]
- Travero, J.T.; Mihara, M. Effects of pyroligneous acid to growth and yield of soybeans (Glycine max). Int. J. Environ. Rural Dev. 2016, 7, 50–54. [Google Scholar]
- European Commissio. Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances and Commission Directive (EC) 98/8 on Biocides, 2nd ed.; TDG, Part II; European Commission: Roma, Italy, 2003. [Google Scholar]
- Hagner, M.; Pasanen, T.; Lindqvist, B.; Lindqvist, I.; Tiilikkala, K.; Penttinen, O.-P.; Setälä, H. Effects of birch tar oils on soil organisms and plants. Agric. Food Sci. 2010, 19, 13–23. [Google Scholar] [CrossRef]
- Fačkovcová, Z.; Vannini, A.; Monaci, F.; Grattacaso, M.; Paoli, L.; Loppi, S. Effects of wood distillate (pyroligneous acid) on sensitive bioindicators (lichen and moss). Ecotoxicol. Environ. Saf. 2020, 204, 111117. [Google Scholar] [CrossRef] [PubMed]
- Pfeuffer, R.J.; Rand, G.M. South Florida ambient pesticide monitoring program. Ecotoxicology 2004, 13, 195–205. [Google Scholar] [CrossRef]
- Schäfer, R.B.; van den Brink, P.J.; Liess, M. Impacts of pesticides on freshwater ecosystems. In Ecological Impacts of Toxic Chemicals; Sanchez-Bayo, F., van den Brink, P., Mann, R.M., Eds.; Bentham: Bussum, The Netherlands, 2011; pp. 111–137. [Google Scholar]
- Sumon, K.A.; Rashid, H.; Peeters, E.T.; Bosma, R.H.; Van den Brink, P.J. Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh. Chemosphere 2018, 206, 92–100. [Google Scholar] [CrossRef]
- Yap, S.Y.; Ong, H.T. The effects of agrochemicals on an aquatic ecosystem: A case study from the Krian River Basin, Malaysia. Environmentalist 1990, 10, 189–202. [Google Scholar] [CrossRef]
- Hagner, M.; Penttinen, O.-P.; Pasanen, T.; Tiilikkala, K.; Setälä, H. Acute toxicity of birch tar oil on aquatic organisms. Agric. Food Sci. 2010, 19, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.K.; Abraham, G.; Singh, Y.V.; Singh, P.K. Advancements in the utilization of Azolla-Anabaena system in relation to sustainable agricultural practices. Proc. Indian Natl. Sci. Acad. 2014, 80, 301–316. [Google Scholar] [CrossRef]
- Eimoori, R.; Zolala, J.; Pourmohiabadi, H.; Noroozian, E.; Mansouri, H. Contribution of Azolla filiculoides to hydrazine elimination from water. Wetl. Ecol. Manag. 2020, 28, 439–447. [Google Scholar] [CrossRef]
- Naghipour, D.; Ashrafi, S.D.; Gholamzadeh, M.; Taghavi, K.; Naimi-Joubani, M. Phytoremediation of heavy metals (Ni, Cd, Pb) by Azolla filiculoides from aqueous solution: A dataset. Data Brief 2018, 21, 1409–1414. [Google Scholar] [CrossRef]
- Sachdeva, S.; Sharma, A. Azolla: Role in phytoremediation of heavy metals. Int. J. Eng. Sci. 2012, 1, 9698. [Google Scholar]
- Sela, M.; Garty, J.; Tel-Or, E. The accumulation and the effect of heavy metals on the water fern Azolla filiculoides. New Phytol. 1989, 112, 7–12. [Google Scholar] [CrossRef]
- Vafaei, F.; Khataee, A.R.; Movafeghi, A.; Lisar, S.S.; Zarei, M. Bioremoval of an azo dye by Azolla filiculoides: Study of growth, photosynthetic pigments and antioxidant enzymes status. Int. Biodeterior. Biodegrad. 2012, 75, 194–200. [Google Scholar] [CrossRef]
- Vannini, A.; Paoli, L.; Vichi, M.; Bačkor, M.; Bačkorová, M.; Loppi, S. Toxicity of diclofenac in the fern Azolla filiculoides and the lichen Xanthoria parietina. Bull. Environ. Contam. Toxicol. 2018, 100, 430–437. [Google Scholar] [CrossRef]
- Bianchi, E.; Biancalani, A.; Berardi, C.; Antal, A.; Fibbi, D.; Coppi, A.; Lastrucci, L.; Bussotti, N.; Colzi, I.; Renai, L.; et al. Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta. Sci. Total Environ. 2020, 746, 141219. [Google Scholar] [CrossRef]
- Jafari, N.; Senobari, Z.; Pathak, R.K. Biotechnological potential of Azolla filiculoides, Azolla microphylla and Azolla pinnata for biosorption of Pb (II), Mn (II), Cu (II) and Zn (II). Ecol. Environ. Conserv. 2010, 16, 443–449. [Google Scholar]
- Sánchez-Viveros, G.; Ferrera-Cerrato, R.; Alarcón, A. Short-term effects of arsenate-induced toxicity on growth, chlorophyll and carotenoid contents, and total content of phenolic compounds of Azolla filiculoides. Water Air Soil Pollut. 2011, 217, 455–462. [Google Scholar] [CrossRef]
- Wagner, G.M. Azolla: A review of its biology and utilization. Bot. Rev. 1997, 63, 1–26. [Google Scholar] [CrossRef]
- Khosravi, M.; Ganji, M.T.; Rakhshaee, R. Toxic effect of Pb, Cd, Ni and Zn on Azolla filiculoides in the international Anzali wetland. Int. J. Environ. Sci. Technol. 2005, 2, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Saxena, S.; Sharma, D.K. Tolerance and phytoaccumulation of chromium by three Azolla species. World J. Microbiol. Biotechnol. 2006, 22, 97–100. [Google Scholar] [CrossRef]
- Rakhshaee, R.; Khosravi, M.; Ganji, M.T. Kinetic modeling and thermodynamic study to remove Pb (II), Cd (II), Ni (II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. J. Hazard. Mater. 2006, 134, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Antunes, A.P.M.; Watkins, G.M.; Duncan, J.R. Batch studies on the removal of gold (III) from aqueous solution by Azolla filiculoides. Biotechnol. Lett. 2001, 23, 249–251. [Google Scholar] [CrossRef]
- Ahmady-Asbchin, S.; Mohammadi, M.; Bahrami, A.; Monfared, A.L.; Jafari, N. Batch studies on the removal of Ni (II) from aqueous solution by Azolla filiculoides. Afr. J. Biotechnol. 2011, 10, 7427–7431. [Google Scholar]
- Moretti, A.; Siniscalco Gigliano, G. Influence of light and pH on growth and nitrogenase activity on temperate-grown Azolla. Biol. Fertil. Soils 1988, 6, 131–136. [Google Scholar] [CrossRef]
- Ganji, M.T.; Khosravi, M.; Rakhshaee, R. Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2. Int. J. Environ. Sci. Technol. 2005, 1, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Paoli, L.; Vannini, A.; Monaci, F.; Loppi, S. Competition between heavy metal ions for binding sites in lichens: Implications for biomonitoring studies. Chemosphere 2018, 199, 655–660. [Google Scholar] [CrossRef]
- Renaudin, M.; Leblond, S.; Meyer, C.; Rose, C.; Lequy, E. The coastal environment affects lead and sodium uptake by the moss Hypnum cupressiforme used as an air pollution biomonitor. Chemosphere 2018, 193, 506–513. [Google Scholar] [CrossRef]
- Sela, M.; Tel-Or, E.; Fritz, E.; Huttermann, A. Localization and toxic effects of cadmium, copper, and uranium in Azolla. Plant Physiol. 1988, 88, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Benaroya, R.O.; Tzin, V.; Tel-Or, E.; Zamski, E. Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol. Biochem. 2004, 42, 639–645. [Google Scholar] [CrossRef]
- BioDea—Scheda Informative—Distillato di Legno. Available online: https://www.biodea.bio/website/wp-content/uploads/2019/11/BioDea-scheda-informativa-Distillato-di-Legno-BIO.pdf (accessed on 16 August 2020).
- Rice, K.; Lumley, T. Permutation Tests; UW Biostatistics: Seattle, WA, USA, 2008. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
Treatment | Trace Element Concentrations (Mean ± SD) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1st day | As | Ba | Cd | Cu | Fe | Mn | Ni | Pb | Zn |
Control | 1.458 ± 0.224 a | 90.1 ± 12.6 a | 0.059 ± 0.007 a | 2.14 ± 0.73 | 1505 ± 260 ab | 2428 ± 469 a | 1.84 ± 0.90 a | 1.19 ± 0.16 | 18.2 ± 7.1 |
1:700 | 0.929 ± 0.118 b | 50.9 ± 3.5 b | 0.175 ± 0.007 b | 2.23 ± 1.11 | 1052 ± 142 a | 1024 ± 54 b | 2.92 ± 2.45 ab | 1.30 ± 0.20 | 19.6 ± 2.2 |
1:500 | 1.028 ± 0.251 ab | 51.5 ± 7.8 b | 0.113 ± 0.017 ab | 0.62 ± 0.39 | 1144 ± 246 ab | 1009 ± 192 b | 4.84 ± 1.93 b | 1.43 ± 0.20 | 17.7 ± 5.7 |
1:300 | 1.208 ± 0.304 ab | 47.6 ± 10.6 b | 0.083 ± 0.010 ab | 1.77 ± 0.44 | 1588 ± 466 b | 677 ± 174 b | 4.05 ± 0.65 ab | 1.50 ± 0.08 | 24.1 ± 3.7 |
2nd DAY | |||||||||
Control | 1.140 ± 0.280 | 75.7 ± 18.5 a | 0.084 ± 0.023 a | 1.95 ± 0.76 | 1224 ± 355 | 1827 ± 602 a | 5.18 ± 1.50 * | 1.07 ± 0.18 | 13.1 ± 5.6 a |
1:700 | 0.944 ± 0.107 | 59.3 ± 7.9 ab | 0.203 ± 0.024 b | 1.89 ± 0.39 | 1184 ± 144 | 1376 ± 197 ab | 4.35 ± 0.96 | 1.22 ± 0.20 | 24.2 ± 4.4 ab |
1:500 | 0.983 ± 0.272 | 59.4 ± 10.0 ab | 0.090 ± 0.003 a | 1.55 ± 0.69 | 1133 ± 209 | 1443 ± 332 ab | 4.84 ± 1.55 | 1.22 ± 0.07 | 22.1 ± 6.3 ab |
1:300 | 0.728 ± 0.160 | 35.8 ± 1.8 b | 0.091 ± 0.017 a | 3.49 ± 1.70 | 1079 ± 141 | 717 ± 65 b | 4.65 ± 0.82 | 1.27 ± 0.09 | 28.0 ± 4.7 b |
3rd day | |||||||||
Control | 0.859 ± 0.119 * | 59.7 ± 7.7 * ab | 0.089 ± 0.020 a | 3.54 ± 1.31 a | 840 ± 140 * | 1242 ± 230 a * | 2.80 ± 1.69 | 0.58 ± 0.08 a * | 22.9 ± 2.6 a |
1:700 | 1.085 ± 0.355 | 78.7 ± 20.9 a | 0.282 ± 0.085 b | 8.21 ± 1.24 b | 1191 ± 271 | 2160 ± 775 b | 3.14 ± 0.90 | 1.50 ± 0.20 b | 36.3 ± 3.1 b |
1:500 | 0.843 ± 0.136 | 61.4 ± 9.5 ab | 0.108 ± 0.040 a | 3.58 ± 1.52 a | 958 ± 152 | 1679 ± 377 ab | 4.95 ± 0.24 | 1.07 ± 0.17 ab | 25.3 ± 6.5 a |
1:300 | 0.754 ± 0.116 | 38.9 ± 7.1 b | 0.126 ± 0.026 a | 4.69 ± 1.46 a | 846 ± 146 | 946 ± 192 a | 2.84 ± 2.32 | 1.27 ± 0.66 b | 31.2 ± 2.0 ab |
Summary: | ↓ – – | ↓ ↓ – | ↑ ↑ ↑ | – – ↑ | – – – | ↓ ↓ ↑ | ↑ – – | – – ↑ | – ↑ ↑ |
Trace Element Uptake or Releasing | |||||||||
---|---|---|---|---|---|---|---|---|---|
Species | As | Ba | Cd | Cu | Fe | Mn | Ni | Pb | Zn |
Fern | ↑ 1:700 | ↑ 1:700 | ↑ 1:700 | ↑ 1:700, 1:300 | ↑ 1:700 | ||||
Moss | ↓ 1:700, 1:500 | ↓ 1:300 | N.A | ↑ 1:700, 1:500 | |||||
Lichen | ↑ 1:500 | ↑ 1:700, 1:500 | N.A | ↑ 1:500 | ↑ 1:500, 1:300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fačkovcová, Z.; Vannini, A.; Monaci, F.; Grattacaso, M.; Paoli, L.; Loppi, S. Uptake of Trace Elements in the Water Fern Azolla filiculoides after Short-Term Application of Chestnut Wood Distillate (Pyroligneous Acid). Plants 2020, 9, 1179. https://doi.org/10.3390/plants9091179
Fačkovcová Z, Vannini A, Monaci F, Grattacaso M, Paoli L, Loppi S. Uptake of Trace Elements in the Water Fern Azolla filiculoides after Short-Term Application of Chestnut Wood Distillate (Pyroligneous Acid). Plants. 2020; 9(9):1179. https://doi.org/10.3390/plants9091179
Chicago/Turabian StyleFačkovcová, Zuzana, Andrea Vannini, Fabrizio Monaci, Martina Grattacaso, Luca Paoli, and Stefano Loppi. 2020. "Uptake of Trace Elements in the Water Fern Azolla filiculoides after Short-Term Application of Chestnut Wood Distillate (Pyroligneous Acid)" Plants 9, no. 9: 1179. https://doi.org/10.3390/plants9091179
APA StyleFačkovcová, Z., Vannini, A., Monaci, F., Grattacaso, M., Paoli, L., & Loppi, S. (2020). Uptake of Trace Elements in the Water Fern Azolla filiculoides after Short-Term Application of Chestnut Wood Distillate (Pyroligneous Acid). Plants, 9(9), 1179. https://doi.org/10.3390/plants9091179