Emergence of Arctic Extremes
Abstract
:1. Introduction
2. Data Sources
3. Methods
Emergence through Natural Weather Variability Interacting with Arctic Amplification
4. Results
4.1. Greenland Snow Loss as an Example of Atmospheric Events Combining with Arctic Amplification
4.2. Bering Sea Ecosystem and Sea-Ice Loss
4.3. Temperatures in Northern Svalbard
4.4. Typhoon Merbok
4.5. Consilience and Emergence from an Arctic Dataset
4.6. Impact-Based Projections
5. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walsh, J.E.; Ballinger, T.J.; Euskirchen, E.S.; Hanna, E.; Mard, J.; Overland, J.E.; Tangen, H.; Vihma, T. Extreme weather and climate events in northern areas: A review. Earth Sci. Rev. 2020, 209, 103324. [Google Scholar] [CrossRef]
- Fischer, E.; Sippel, S.; Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Chang. 2021, 11, 689–695. [Google Scholar] [CrossRef]
- Moon, T.A.; Overeem, I.; Druckenmiller, M.; Holland, M.; Huntington, H.; Kling, G.; Lovecraft, A.L.; Miller, G.; Scambos, T.; Schädel, C.; et al. The expanding footprint of rapid Arctic change. Earths Future 2019, 7, 212–218. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M.; et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef] [PubMed]
- Thoman, R.L.; Druckenmiller, M.L.; Moon, T.A. The Arctic Smashed So Many Terrifying Records in 2023, What Can We Even Say? Science Alert. 12 December 2023. Republished from The Conversation. Available online: https://www.sciencealert.com/the-arctic-smashed-so-many-terrifying-records-in-2023-what-can-we-even-say (accessed on 1 June 2024).
- Shepherd, T. Bringing physical reasoning into statistical practice in climate-change science. Clim. Chang. 2021, 169, 2. [Google Scholar] [CrossRef]
- Landrum, L.; Holland, M.M. Extremes become routine in an emerging new Arctic. Nat. Clim. Chang. 2020, 10, 1108–1115. [Google Scholar] [CrossRef]
- Overland, J.E. Arctic climate extremes. Atmosphere 2022, 13, 1670. [Google Scholar] [CrossRef]
- Benestad, R.; Thoman, R.L., Jr.; Cohen, J.L.; Overland, J.; Hanna, E.; Moore, G.W.K.; Rantanen, M.; Petersen, G.N.; Webster, M. Extreme weather and climate events in 2022. In State of the Climate in 2022. Bull. Am. Meteorol. Soc. 2023, 104, S285–S287. [Google Scholar] [CrossRef]
- Tedesco, M.; Fettweis, X. Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet. Cryosphere 2020, 14, 1209–1223. [Google Scholar] [CrossRef]
- Ramirez, R. Rain Fell at the Normally Snowy Summit of Greenland for the First Time on Record. CNN. 19 August 2021. Available online: https://edition.cnn.com/2021/08/19/weather/greenland-summit-rain-climate-change/index.html (accessed on 1 March 2024).
- Box, J.E.; Wehrle, A.; van As, D.; Fausto, R.S.; Kjeldsen, K.K.; Dachauer, A.; Ahlstrom, A.P.; Picard, G. Greenland ice sheet rainfall, heat and albedo feedback impacts from the mid-August 2021 atmospheric River. Geophys. Res. Lett. 2022, 49, e2021GL097356. [Google Scholar] [CrossRef]
- Mattingly, K.S.; Ramseyer, C.A.; Rosen, J.J.; Mote, T.L.; Muthyala, R. Increasing water vapor transport to the Greenland ice sheet revealed using self-organizing maps: Increasing Greenland moisture transport. Geophys. Res. Lett. 2016, 43, 9250–9258. [Google Scholar] [CrossRef]
- Francis, J.; Skific, N. Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos. Trans. A. Math. Phys. Eng. Sci. 2015, 373, 20140170. [Google Scholar] [CrossRef] [PubMed]
- ESOTC/2022 Report, Arctic, Greenland Heatwaves|Copernicus. 2022. Available online: https://climate.copernicus.eu/esotc/2022/greenland-heatwaves (accessed on 1 April 2024).
- Overland, J.E.; Siddon, E.; Sheffield, G.; Ballinger, T.J.; Szuwalski, C. Transformative ecological and human impacts from climate change and diminished sea ice in the northern Bering Sea. Weather Clim. Soc. 2024, 16, 303–313. [Google Scholar] [CrossRef]
- Wickstrom, S. (University Center in Svalbard, Longyearbyen, Svalbard, Norway). Personal communication. 2022. [Google Scholar]
- Isaksen, K.; Nordli, Ø.; Ivanov, B.; Køltzow, M.A.; Aaboe, S.; Gjelten, H.M.; Mezghani, A.; Eastwood, S.; Førland, E.; Benestad, R.E.; et al. Exceptional warming over the Barents area. Sci. Rep. 2022, 12, 9371. [Google Scholar] [CrossRef] [PubMed]
- Thoman, R. Why Typhoon Merbok Was So Powerful when It Hit Alaska. Scientific American, 19 September 2022. [Google Scholar]
- England, M.R.; Eisenman, I.; Lutsko, N.J.; Wagner, T.J. The recent emergence of Arctic amplification. Geophys. Res. Lett. 2021, 48, e2021GL094086. [Google Scholar] [CrossRef]
- Holland, M.M.; Landrum, L. The emergence and transient nature of Arctic amplification in coupled climate models. Front. Earth Sci. 2021, 9, 719024. [Google Scholar] [CrossRef]
- Sweeney, A.J.; Fu, Q.; Po-Chedley, S.; Wang, H.; Wang, M. Unique temperature trend pattern associated with internally driven global cooling and Arctic warming during 1980–2022. Geophys. Res. Lett. 2024, 51, e2024GL108798. [Google Scholar] [CrossRef]
- Zhou, W.; Leung, L.R.; Lu, J. Steady threefold Arctic amplification of externally forced warming masked by natural variability. Nat. Geosci. 2024, 17, 508–515. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
Weather Event | Location | Date |
---|---|---|
Storm | Alaska | September 2022 |
Heatwave | Greenland | September 2022 |
Rain | Alaska | July/August 2022 |
Heatwave | Greenland | September 2022 |
Heatwave | Norway | March 2022 |
Heatwave | Svalbard | June 2022 |
Hot/cold | Iceland | November/December 2022 |
Freezing rain | Alaska | December 2022 |
Cold | Russia | December 2022 |
Storm | Barents | January 2022 |
Wildfire | Canada | October 2022 |
Cold | Canada | January 2022 |
Snow | Canada | Winter 2022 |
Heatwave | Canada | Summer 2022 |
Heatwave | Arctic | Summer 2023 |
Wildfire | Canada | August 2023 |
Melt | Arctic | June 2023 |
Melt | Greenland | September 2023 |
SST | Barents | August 2023 |
SST | Beaufort | August 2023 |
Low salmon | Alaska | September 2023 |
Extreme winds | Northern Canada | November 2023 |
Snow | Alaska/Canada | December 2023 |
Warm temperatures | Northern Canada | January 2024 |
Cold temperatures | East Siberia | February 2024 |
Drought | Iceland | Winter 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Overland, J.E. Emergence of Arctic Extremes. Climate 2024, 12, 109. https://doi.org/10.3390/cli12080109
Overland JE. Emergence of Arctic Extremes. Climate. 2024; 12(8):109. https://doi.org/10.3390/cli12080109
Chicago/Turabian StyleOverland, James E. 2024. "Emergence of Arctic Extremes" Climate 12, no. 8: 109. https://doi.org/10.3390/cli12080109
APA StyleOverland, J. E. (2024). Emergence of Arctic Extremes. Climate, 12(8), 109. https://doi.org/10.3390/cli12080109