A Weather-Pattern-Based Evaluation of the Performance of CMIP5 Models over Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. CMIP5 Output and Reference Data
2.3. Weather Pattern Identification
2.4. Evaluation Method
3. Results
3.1. Weather Patterns from ERA-Interim
3.2. Comparison between CMIP5 and ERA-Interim Patterns
3.3. Comparison between Frequencies of Occurrence
3.4. Characterization of Model Performance
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Chapter Evaluation of Climate Models; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Webster, P.; Curry, J. Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Res. Lett. 2012, 39, L10701. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2013, 3, 369–373. [Google Scholar] [CrossRef]
- Neelin, J.; Langenbrunner, B.; Meyerson, J.; Hall, A.; Berg, N. California winter precipitation change under global warming in the coupled model intercomparison project phase 5 ensemble. J. Clim. 2013, 26. [Google Scholar] [CrossRef]
- Polade, S.; Gershunov, A.; Cayan, D.; Dettinger, M.; Pierce, D. Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models. Geophys. Res. Lett. 2013, 40, 2296–2301. [Google Scholar] [CrossRef]
- Zappa, G.; Shaffrey, L.; Hodges, K. The Ability of CMIP5 Models to Simulate North Atlantic Extratropical Cyclones. J. Clim. 2013, 26, 5379–5396. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble:Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Maloney, E.D.; Camargo, S.J.; Chang, E.; Colle, B.; Fu, R.; Geil, K.L.; Hu, Q.; Jiang, X.; Johnson, N.; Karnauskas, K.B.; et al. North American Climate in CMIP5 Experiments: Part III: Assessment of Twenty-First-Century Projections. J. Clim. 2014, 27, 2230–2270. [Google Scholar] [CrossRef]
- Thibeault, J.; Seth, A. A Framework for Evaluating Model Credibility for Warm-Season Precipitation in Northeastern North America: A Case Study of CMIP5 Simulations and Projections. J. Clim. 2014, 27, 493–510. [Google Scholar] [CrossRef]
- Mehran, A.; AghaKouchak, A.; Phillips, T. Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos. 2014, 119, 1695–1707. [Google Scholar] [CrossRef] [Green Version]
- Grainger, S.; Frederiksen, C.S.; Zheng, X. Assessment of Modes of Interannual Variability of Southern Hemisphere Atmospheric Circulation in CMIP5 Models. J. Clim. 2014, 27, 8107–8125. [Google Scholar] [CrossRef]
- Elguindi, N.; Giorgi, F.; Turuncoglu, U. Assessment of CMIP5 global model simulations over the subset of CORDEX domains used in the Phase I CREMA. Clim. Chang. 2014, 125, 7–21. [Google Scholar] [CrossRef]
- Elguindi, N.; Grundstein, A.; Bernardes, S.; Turuncoglu, U.; Feddema, J. Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification. Clim. Chang. 2014, 122, 523–538. [Google Scholar] [CrossRef]
- Stanfield, R.E.; Dong, X.; Xi, B.; Kennedy, A.; Del Genio, A.; Minnins, P.; Jiang, J.H. Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part I: Cloud Fraction and Properties. J. Clim. 2014, 27, 4189–4208. [Google Scholar] [CrossRef]
- Stanfield, R.E.; Dong, X.; Xi, B.; Del Genio, A.; Minnis, P.; Doelling, D.; Loeb, N. Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part II: TOA Radiation Budget and CREs. J. Clim. 2015, 28, 1842–1864. [Google Scholar] [CrossRef]
- Koutroulis, A.; Grillakis, M.G.; Tsanis, I.K.; Papadimitriou, L. Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Clim.Dyn. 2016, 47, 1881–1898. [Google Scholar] [CrossRef]
- Ning, L.; Bradley, R.S. NAO and PNA influences on winter temperature and precipitation over the eastern United States in CMIP5 GCMs. Clim. Dyn. 2016, 46, 1257–1276. [Google Scholar] [CrossRef]
- Masato, G.; Woollings, T.; Williams, P.; Hoskins, B.; Lee, R. A regime analysis of Atlantic winter jet variability applied to evaluate HadGEM3-GC2. Q. J. R. Meteorol. Soc. 2016, 142, 3162–3170. [Google Scholar] [CrossRef] [Green Version]
- Parsons, L.; Loope, G.; Overpeck, J.; Ault, T.; Stouffer, R.; Cole, J. Temperature and Precipitation Variance in CMIP5 Simulations and Paleoclimate Records of the Last Millennium. J. Clim. 2017, 30, 8885–8912. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Barrett, A.P.; Colle, B.; Nelun Fernando, D.; Fu, R.; Geil, K.L.; Hu, Q.; Kinter, J.; Kumar, S.; Langenbrunner, B. North American Climate in CMIP5 Experiments. Part I: Evaluation of Historical Simulations of Continental and Regional Climatology. J. Clim. 2013, 26, 9209–9245. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.; Jones, C. CMIP5 Simulations of Low-Level Tropospheric Temperature and Moisture over the Tropical Americas. J. Clim. 2013, 26, 6257–6286. [Google Scholar] [CrossRef] [Green Version]
- Stanfield, R.E.; Jiang, J.H.; Dong, X.; Xi, B.; Su, H.; Donner, L.; Rotstayn, L.; Wu, T.; Cole, J.; Shindo, E. A quantitative assessment of precipitation associated with the ITCZ in the CMIP5 GCM simulations. Clim. Dyn. 2016, 47, 1863–1880. [Google Scholar] [CrossRef]
- Grose, M.R.; Brown, J.N.; Narsey, S.; Brown, J.R.; Murphy, B.F.; Langlais, C.; Sen Gupta, A.; Moise, A.F.; Irving, D.B. Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int. J. Climatol. 2014, 34, 3382–3399. [Google Scholar] [CrossRef]
- Sheffield, J.; Camargo, S.J.; Fu, R.; Hu, Q.; Jiang, X.; Johnson, N.; Karnauskas, K.B.; Kim, S.T.; Kinter, J.; Kumar, S.; et al. North American Climate in CMIP5 Experiments. Part II: Evaluation of Historical Simulations of Intraseasonal to Decadal Variability. J. Clim. 2013, 26, 9247–9290. [Google Scholar] [CrossRef]
- Langenbrunner, B.; Neelin, J. Analyzing ENSO teleconnections in CMIP models as a measure of model fidelity in simulating precipitation. J. Clim. 2013, 26, 4431–4446. [Google Scholar] [CrossRef]
- Geil, K.L.; Serra, Y.L.; Zeng, X. Assessment of CMIP5 Model Simulations of the North American Monsoon System. J. Clim. 2013, 26, 8787–8801. [Google Scholar] [CrossRef]
- Hidalgo, H.; Alfaro, E. Skill of CMIP5 climate models in reproducing 20th century basic climate features in Central America. Int. J. Climatol. 2015, 35, 3397–3421. [Google Scholar] [CrossRef] [Green Version]
- Simon Wang, S.Y.; Huang, W.R.; Yoon, J.H. The North American winter ‘dipole’ and extremes activity: A CMIP5 assessment. Atmos. Sci. Lett. 2015, 16, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Franco, R.; Giorgi, F.; Coppola, E.; Kucharski, F. The role of ENSO and PDO in variability of winter precipitation over North America from twenty first century CMIP5 projections. Clima. Dyn. 2016, 46, 3259–3277. [Google Scholar] [CrossRef]
- Nigro, M.; Cassano, J.; Seefeldt, M. A Weather-Pattern-Based Approach to Evaluate the Antarctic Mesoscale Prediction System (AMPS) Forecasts: Comparison to Automatic Weather Station Observations. Weather Forecast. 2011, 26, 184–198. [Google Scholar] [CrossRef]
- Schuenemann, K.; Cassano, J. Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 1. Evaluation of late 20th century simulations from IPCC models. J. Geophys. Res. 2009, 114, D20113. [Google Scholar] [CrossRef] [Green Version]
- Finnis, J.; Cassano, J.; Holland, M.; Serrezed, M.; Uotila, P. Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models; Part 1: The Mackenzie River Basin. Int. J. Climatol. 2009, 29, 1226–1243. [Google Scholar] [CrossRef]
- Radić, V.; Clarke, G. Evaluation of IPCC Models’ Performance in Simulating Late-Twentieth-Century Climatologies and Weather Patterns over North America. J. Clim. 2011, 24, 5257–5274. [Google Scholar] [CrossRef] [Green Version]
- Perez, J.; Menendez, M.; Mendez, F.J.; Losada, I.J. Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region. Clim. Dyn. 2014, 43, 2663–2680. [Google Scholar] [CrossRef]
- Muñoz, A.G.; Yang, X.; Vecchi, G.A.; Robertson, A.W.; Cooke, W.F. A Weather-Type-Based Cross-Time-Scale Diagnostic Framework for Coupled Circulation Models. J. Clim. 2017, 30, 8951–8972. [Google Scholar] [CrossRef]
- Frederiksen, C.S.; Ying, K.; Grainger, S.; Zheng, X. Modes of interannual variability in northern hemisphere winter atmospheric circulation in CMIP5 models: Evaluation, projection and role of external forcing. Clim. Dyn. 2018, 1–21. [Google Scholar] [CrossRef]
- Brigode, P.; Gérardin, M.; Bernardara, P.; Gailhard, J.; Ribstein, P. Changes in French weather pattern seasonal frequencies projected by a CMIP5 ensemble. Int. J. Climatol. 2018, 38, 3991–4006. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Dong, X.; Kennedy, A.; Hagenhoff, B.; Xi, B. A Regime-Based Evaluation of Southern and Northern Great Plains Warm-Season Precipitation Events in WRF. Weather Forecast. 2019, 34, 805–831. [Google Scholar] [CrossRef] [Green Version]
- Kohonen, T. Self-Organizing Maps, 3rd ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Díaz-Esteban, Y.; Raga, G. Weather regimes associated with summer rainfall variability over southern Mexico. Int. J. Climatol. 2018, 38, 169–186. [Google Scholar] [CrossRef]
- Méndez, M.; Magaña, V. Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Clim. 2010, 23, 1175–1188. [Google Scholar] [CrossRef] [Green Version]
- Curtis, S. Daily precipitation distributions over the intra-Americas seas and their inter-annual variability. Atmósfera 2013, 26, 243–259. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Glecker, P.; Taylor, K.; Doutriaux, C. Performance metrics for climate models. J. Geophys. Res. 2008, 113, L06711. [Google Scholar] [CrossRef]
- Vesanto, J.; Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 2000, 11, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Elghazel, H.; Benabdeslem, K. Different aspects of clustering the self-organizing maps. Neural Process. Lett. 2014, 39, 97–114. [Google Scholar] [CrossRef]
- Romero-Centeno, R.; Zavala-Hidalgo, J.; Raga, G.B. Midsummer Gap Winds and Low-Level Circulation over the Eastern Tropical Pacific. J. Clim. 2007, 20, 3768–3784. [Google Scholar] [CrossRef] [Green Version]
- Wang, C. Variability of the Caribbean low-level jet and itsrelations to climate. Clim. Dyn. 2007, 29, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Lee, S. Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophys. Res. Lett. 2007, 34, L02703. [Google Scholar] [CrossRef] [Green Version]
- Colbert, A.J.; Soden, B.J. Climatological Variations in North Atlantic Tropical Cyclone Tracks. J. Clim. 2012, 25, 657–673. [Google Scholar] [CrossRef]
- Amador, J.A. The intra-Americas sea low-level jet, overview and future research. Ann. N. Y. Acad. Sci. 2008, 1146, 153–188. [Google Scholar] [CrossRef] [Green Version]
- Cook, K.H.; Vizy, E.K. Hydrodynamics of the Caribbean Low-Level Jet and Its Relationship to Precipitation. J. Clim. 2010, 23, 1477–1494. [Google Scholar] [CrossRef]
- Magaña, V.; Amador, J.; Medina, S. The midsummer drought over Mexico and Central America. J. Clim. 1999, 12, 1577–1588. [Google Scholar] [CrossRef]
- Muñoz, E.; Busalacchi, A.; Nigam, S.; Ruiz-Barradas, A. Winter and summer structure of the Caribbean low-level jet. J. Clim. 2008, 21, 1260–1276. [Google Scholar] [CrossRef]
- Whyte, F.; Taylor, M.; Stephenson, T.; Campbell, J. Features of the Caribbean low level jet. Int. J. Climatol. 2008, 28, 119–128. [Google Scholar] [CrossRef]
- Martin, E.R.; Schumacher, C. The Caribbean Low-Level Jet and Its Relationship with Precipitation in IPCC AR4 Models. J. Clim. 2011, 24, 5935–5950. [Google Scholar] [CrossRef]
Model | Institution | Spatial Resolution (Lat × Lon) | Temporal Resolution |
---|---|---|---|
MPI-ESM-LR | Max Planck Institute for Meteorology | 1.87° × 1.88° | Daily |
MRI-ESM1 | Meteorological Research Institute | 1.12° × 1.13° | Daily |
ACCESS1.3 | CSIRO (Commonwealth Scientific and Industrial Research Organization, Australia), and BOM (Bureau of Meteorology, Australia) | 1.25° × 1.88° | Daily |
CMCC-CM | Centro Euro-Mediterraneo per I Cambiamenti Climatici | 0.75° × 0.75° | Daily |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Esteban, Y.; Raga, G.B.; Díaz Rodríguez, O.O. A Weather-Pattern-Based Evaluation of the Performance of CMIP5 Models over Mexico. Climate 2020, 8, 5. https://doi.org/10.3390/cli8010005
Díaz-Esteban Y, Raga GB, Díaz Rodríguez OO. A Weather-Pattern-Based Evaluation of the Performance of CMIP5 Models over Mexico. Climate. 2020; 8(1):5. https://doi.org/10.3390/cli8010005
Chicago/Turabian StyleDíaz-Esteban, Yanet, Graciela B. Raga, and Oscar Onoe Díaz Rodríguez. 2020. "A Weather-Pattern-Based Evaluation of the Performance of CMIP5 Models over Mexico" Climate 8, no. 1: 5. https://doi.org/10.3390/cli8010005
APA StyleDíaz-Esteban, Y., Raga, G. B., & Díaz Rodríguez, O. O. (2020). A Weather-Pattern-Based Evaluation of the Performance of CMIP5 Models over Mexico. Climate, 8(1), 5. https://doi.org/10.3390/cli8010005