Virtual Validation of In-Flight GNSS Signal Reception during Jamming for Aeronautics Applications
Abstract
:1. Introduction
2. DLR’s Measurement Campaign
3. Installed Performance Analysis
4. Full-Scenario Simulation
4.1. Scenario 1: Jamming Power Level Estimation
4.2. Scenario 2: GNSS Reception during Jamming
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pokrajac, I.; Kozić, N.; Čančarević, A.; Brusin, R. Jamming of GNNS signals. Sci. Tech. Rev. 2018, 68, 18–24. [Google Scholar] [CrossRef]
- Osechas, O.; Fohlmeister, F.; Dautermann, T.; Felux, M. Impact of GNSS-band radio interference on oper-ational avionics. NAVIGATION J. Inst. Navig. 2022, 69, navi.516. [Google Scholar]
- Radio Frequency Interference to satellite navigation: An active threat for aviation? In EUROCON-TROL Think Paper 9; EUROCONTROL: Brussels, Belgium, 2021.
- Figuet, B.; Waltert, M.; Felux, M.; Olive, X. GNSS Jamming and Its Effect on Air Traffic in Eastern Europe. Eng. Proc. 2022, 28, 12. [Google Scholar]
- Dinesh, S.; Faudzi, M.M.; Fitry, M.A.Z. Evaluation of the effect of radio frequency interference on Global Positioning System (GPS) accuracy via GPS simulation. Def. Sci. J. 2012, 62, 338–347. [Google Scholar]
- Department of Army (DOA). Electronic Warfare in Operations. In Army Field Manual 3–36; Department of Army: Washington, DC, USA, 2009. [Google Scholar]
- Borio, D.; Dovis, F.; Kuusniemi, H.; Presti, L.L. Impact and Detection of GNSS Jammers on Consumer Grade Satellite Navigation Receivers. Proc. IEEE 2016, 104, 1233–1245. [Google Scholar] [CrossRef]
- Cuntz, M.; Konovaltsev, A.; Sgammini, M.; Hattich, C.; Kappen, G.; Meurer, M.; Hornbostel, A.; Dreher, A. Field test: Jamming the DLR adaptive antenna receiver. In Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 19–23 September 2011; pp. 384–392. [Google Scholar]
- Amin, M.G.; Sun, W. A novel interference suppression scheme for global navigation satellite systems using antenna array. IEEE J. Sel. Areas Commun. 2005, 23, 999–1012. [Google Scholar] [CrossRef]
- Fernández-Prades, C.; Arribas, J.; Closas, P. Robust GNSS Receivers by Array Signal Processing: Theory and Implementation. Proc. IEEE 2016, 104, 1207–1220. [Google Scholar] [CrossRef]
- Pérez-Marcos, E.; Caizzone, S.; Cuntz, M.; Konovaltsev, A.; Meurer, M. STAP Performance and Antenna Miniaturization in Multi-Antenna GNSS Receivers. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019; pp. 2575–2587. [Google Scholar]
- Volakis, J.L.; O’Brien, A.J.; Chen, C.-C. Small and Adaptive Antennas and Arrays for GNSS Applications. Proc. IEEE 2016, 104, 1221–1232. [Google Scholar] [CrossRef]
- Yinusa, K.A.; Marcos, E.P.; Caizzone, S. Robust Satellite Navigation by Means of a Spherical Cap Con-formal Antenna Array. In Proceedings of the 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Waterloo, ON, Canada, 19–22 August 2018; pp. 1–2. [Google Scholar]
- Tripathi, V.; Elmarissi, W.; Caizzone, S. An ITAR-free Dual Frequency Antenna Array in the ARINC Footprint for Robust Aeronautical Navigation. In Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020), Denver, CO, USA, 21–25 September 2020. [Google Scholar]
- Caizzone, S.; Buchner, G.; Circiu, M.-S.; Cuntz, M.; Elmarissi, W.; Pérez Marcos, E. A Miniaturized Multiband Antenna Array for Robust Navigation in Aerial Applications. Sensors 2019, 19, 2258. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Su, D.-L.; Zhao, X.-Y.; Guo, D.-D. Analysis of performance before and after GNSS antenna is installed on the airplane. In Proceedings of the 2008 8th International Symposium on Antennas, Propaga-tion and EM Theory, Kunming, China, 2–5 November 2008; pp. 352–355. [Google Scholar]
- Jiménez, F.J.; Sendarrubias, M.A.; Moreno, J.A.R.; Gil, E.P. Modern electromagnetic simulation tools ap-plied to On-aircraft Antenna Integration. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 912–916. [Google Scholar]
- Weinmann, F.; Knott, P.; Vaupel, T. EM simulation of installed antenna performance on land, aerial and maritime vehicles. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013; pp. 2179–2180. [Google Scholar]
- Caizzone, S.; Tripathi, V.; Hehenberger, S. Investigating GNSS Multipath in Aeronautic Applications Through Antenna Installed Performance. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar]
- Heckler, M.V.T.; Cuntz, M.; Konovaltsev, A.; Greda, L.A.; Dreher, A.; Meurer, M. Development of Robust Safety-of-Life Navigation Receivers. IEEE Trans. Microw. Theory Tech. 2011, 59, 998–1005. [Google Scholar] [CrossRef]
- Cuntz, M.; Konovaltsev, A.; Meurer, M. Concepts, Development and Validation of Multi-Antenna GNSS Receivers for Resilient Navigation. Proc. IEEE 2016, 104, 1288–1301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, V.; Caizzone, S. Virtual Validation of In-Flight GNSS Signal Reception during Jamming for Aeronautics Applications. Aerospace 2024, 11, 204. https://doi.org/10.3390/aerospace11030204
Tripathi V, Caizzone S. Virtual Validation of In-Flight GNSS Signal Reception during Jamming for Aeronautics Applications. Aerospace. 2024; 11(3):204. https://doi.org/10.3390/aerospace11030204
Chicago/Turabian StyleTripathi, Veenu, and Stefano Caizzone. 2024. "Virtual Validation of In-Flight GNSS Signal Reception during Jamming for Aeronautics Applications" Aerospace 11, no. 3: 204. https://doi.org/10.3390/aerospace11030204
APA StyleTripathi, V., & Caizzone, S. (2024). Virtual Validation of In-Flight GNSS Signal Reception during Jamming for Aeronautics Applications. Aerospace, 11(3), 204. https://doi.org/10.3390/aerospace11030204