Investigation of the Internal Flow Characteristics of a Tiltrotor Aircraft Engine Inlet in a Gust Environment
Abstract
:1. Introduction
2. Theory and Methodology
2.1. Model Introduction
2.2. Performance Parameter Definitions
- (1)
- is defined as
- (2)
- is defined as
- (3)
- The swirl angle used in this study follows the definition and swirl index system specified in the AUR5686 standard [27] for swirl distortion parameters. The expression is given as follows:
2.3. Numerical Methods
2.4. Numerical Validation
3. Results and Discussion
3.1. Time-Averaged Internal Flow Field Analysis of Gust-Free Inlet
3.2. Gust Model and Simulation Condition
3.3. Effect of Head-On Gusts on the Time-Averaged Performance of the Inlet
3.4. Effect of Head-On Gusts on the Time-Averaged Flow Field Characteristics of the Inlet
3.5. Effect of Head-On Gusts on the Unsteady Characteristics of the Flow Field within the Inlet
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
VTOL | vertical take-off and landing |
AIP | aerodynamic interface plane |
CFD | Computational Fluid Dynamics |
total pressure of the freestream | |
mass flow weighted average total pressure at the AIP | |
total pressure recovery coefficient | |
minimum value of the mass flow weighted average total pressure over any 60° sector around the center AIP | |
mass flow weighted average dynamic pressure at the AIP | |
circumferential distortion index | |
swirl angle | |
circumferential velocity at the measurement point on the AIP | |
axial velocity at the measurement point on the AIP | |
SI | swirl angle flux |
proportion of the area where || exceeds 15° to the AIP | |
Cp | pressure coefficient |
RPM | revolutions per minute |
instantaneous wind velocity | |
mean wind velocity | |
gust velocity | |
maximum gust velocity | |
Su | unsteady intensity |
flux of unsteady intensity |
References
- Zanotti, A.; Savino, A.; Palazzi, M.; Tugnoli, M.; Muscarello, V. Assessment of a Mid-Fidelity Numerical Approach for the Investigation of Tiltrotor Aerodynamics. Appl. Sci. 2021, 11, 3385. [Google Scholar] [CrossRef]
- Wen, J.; Song, Y.; Wang, H.; Han, D.; Yang, C. Hybrid Adaptive Control for Tiltrotor Aircraft Flight Control Law Reconfiguration. Aerospace 2023, 10, 1001. [Google Scholar] [CrossRef]
- Garcia, A.J.; Barakos, G.N. Numerical Simulations on the ERICA Tiltrotor. Aerosp. Sci. Technol. 2017, 64, 171–191. [Google Scholar] [CrossRef]
- Hwa, V. Test and Evaluation of an Inlet Barrier Filter to Increase Engine Time-on-Wing for the Bell Boeing V-22 Osprey Tiltrotor; The University of Texas at Arlington: Arlington, TX, USA, 2015. [Google Scholar]
- Maisel, M.D.; Giulianetti, D.J.; Dugan, D.C. The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight, The NASA History; Series No. 17; National Aeronautics and Space Administration, Office of Policy and Plans, NASA History Division: Washington, DC, USA, 2000. [Google Scholar]
- Droandi, G.; Zanotti, A.; Gibertini, G.; Grassi, D.; Campanardi, G. Experimental Investigation of the Rotor-Wing Aerodynamic Interaction in a Tiltwing Aircraft in Hover. Aeronaut. J. 2015, 119, 591–612. [Google Scholar] [CrossRef]
- Wu, Z.L.; Li, C.; Cao, Y.H. Numerical Simulation of Rotor–Wing Transient Interaction for a Tiltrotor in the Transition Mode. Mathematics 2019, 7, 116. [Google Scholar] [CrossRef]
- Meakin, R. Unsteady Simulation of the Viscous Flow about a V-22 Rotor and Wing in Hover. In Proceedings of the 20th Atmospheric Flight Mechanics Conference, Baltimore, MD, USA, 7–15 August 1995; American Institute of Aeronautics and Astronautics: Washington, DC, USA, 1995. [Google Scholar]
- Bao, W.; Wang, W.; Chen, X.; Zhang, H.; Zhao, Q. Numerical Analyses of Aeroacoustic Characteristics of Tiltrotor Considering the Aerodynamic Interaction by the Fuselage in Hover. Aerosp. Sci. Technol. 2023, 141, 108558. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, Y.; Yang, S.; Zhu, X.; Dong, J. Numerical Simulation of Aerodynamic Interaction for a Tilt Rotor Aircraft in Helicopter Mode. Chin. J. Aeronaut. 2016, 29, 843–854. [Google Scholar] [CrossRef]
- Narducci, R.P.; Liu, J.; Wells, A.J.; Mobley, F.J.; Mayer, R.J. CFD Simulations of a Hovering Tiltrotor in Ground Effect. In Proceedings of the AIAA SCITECH 2024 Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar]
- Desopper, A.; Routhieau, V.; Roth, G. Study of the low speed characteristics of a tiltrotor. In Proceedings of the 28th European Rotorcraft Forum, Bristol, UK, 17–20 September 2002. [Google Scholar]
- Lakshminarayan, V.K.; Kalra, T.S.; Baeder, J.D. Detailed Computational Investigation of a Hovering Microscale Rotor in Ground Effect. AIAA J. 2013, 51, 893–909. [Google Scholar] [CrossRef]
- Houbolt, J.C. Atmospheric Turbulence. AIAA J. 1973, 11, 421–437. [Google Scholar] [CrossRef]
- Etkin, B. Turbulent Wind and Its Effect on Flight. J. Aircr. 1981, 18, 327–345. [Google Scholar] [CrossRef]
- Yang, C.; Qiu, Q.; Zhou, Y.; Wu, Z. Review of Aircraft Gust Alleviation Technology. Acta Aeronaut. Astronaut. Sin. 2022, 43, 527350. (In Chinese) [Google Scholar]
- Hunsaker, J.C.; Wilson, E.B. Report on Behavior of Aeroplanes in Gusts; NACA-TR-1: Washington, DC, USA, 1917. [Google Scholar]
- Wu, Z.; Cao, Y.; Ismail, M. Gust Loads on Aircraft. Aeronaut. J. 2019, 123, 1216–1274. [Google Scholar] [CrossRef]
- Seddon, J.; Goldsmith, E.L. Intake Aerodynamics: An Account of the Mechanics of Flow in and around the Air Intake of Turbine-Engined and Ramjet Aircraft and Missiles; Collins Professional and Technical: London, UK, 1985. [Google Scholar]
- Paynter, G.; Koncsek, J.; Turczeniuk, B.; Dvorak, F.A. Extension of CFD Technology Used to Design the JVX Inlet. In Proceedings of the 21st Joint Propulsion Conference, Monterey, CA, USA, 8–10 July 1985.
- Garavello, A.; Benini, E.; Ponza, R.; Scandroglio, A.; Saporiti, A. Aerodynamic Optimization of the ERICA Tilt-Rotor Intake and Exhaust System. In Proceedings of the 37th European Rotorcraft Forum, Ticino Park, Italy, 13–15 September 2011. [Google Scholar]
- Gibertini, G.; Auteri, F.; Colaiuda, L.; Ermacora, M.; Grassi, D.; Zanotti, A. Optimized ERICA Engine Intake Wind Tunnel Test. In Proceedings of the 41st European Rotorcraft Forum, Munich, Germany, 1–4 September 2015. [Google Scholar]
- Gibertini, G.; Zanotti, A.; Campanardi, G.; Auteri, F.; Zagaglia, D.; Crosta, G. Wind-tunnel tests of the ERICA tiltrotor optimised air-intake. Aeronaut. J. 2018, 122, 821–837. [Google Scholar] [CrossRef]
- Soemarwoto, B.; Habing, R.; Pecoraro, M. Adaptive Design Method for a Tilt-Rotor Engine Inlet Duct Optimization. In Proceedings of the AIAA AVIATION 2022 Forum, Virtual, 27 June 2022; American Institute of Aeronautics and Astronautics: Chicago, IL, USA. [Google Scholar]
- Sun, S.; Wu, Z.; Huang, H.; Bangga, G.; Tan, H. Aerodynamic Response of a Serpentine Inlet to Horizontal Periodic Gusts. Aerospace 2022, 9, 824. [Google Scholar] [CrossRef]
- Felker, F.F.; Betzina, M.D.; Signor, D.B. Performance and Loads Data from a Hover Test of a Full-Scale XV-15 Rotor; Technical Report; NASA Ames Research Center: Moffett Field, CA, USA, 1985. [Google Scholar]
- Turbine Engine Inlet Flow Distortion Committee. A Methodology for Assessing Inlet Swirl Distortion; Report No. AIR5686; Society of Automotive Engineers: Warrendale, PA, USA, 2007. [Google Scholar]
- Zheng, G.J.; He, X.M.; Li, D.P.; Tan, H.J.; Wang, K.; Wu, Z.L.; Wang, D.P. Double 90-Degree Deflection Inlet/Volute Coupling Flow Characteristics of Tail Powered UAV. Acta Aeronaut. Astronaut. Sin. 2023, 44, 128782. (In Chinese) [Google Scholar]
- Xu, Z.L.; Da, X.Y.; Fang, Z.L. Assessment of Swirl Distortion of Serpentine Inlet Based on Five-Hole Probe. Acta Aeronaut. Astronaut. Sin. 2017, 37, 121342. (In Chinese) [Google Scholar]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Huang, H.X.; Tan, H.J.; Lin, Z.K.; Li, Z.J.; Sun, S.; Chen, H.; Xiao, Z.X. Flowfield of a Helicopter Submerged Inlet with Power Output Shaft. Acta Mech. Sin. 2021, 37, 156–168. [Google Scholar] [CrossRef]
- Cheng, D.S.; Tan, H.J.; Sun, S.; Tong, Y. Computational Study of a High-Performance Submerged Inlet with Bleeding Vortex. J. Aircr. 2012, 49, 852–860. [Google Scholar] [CrossRef]
- Zheng, G.J.; Wu, Z.L.; Tan, H.J.; Zhang, Y.; Wang, K. Design and Examination of a Turboprop Inlet with Scavenge Duct. Chin. J. Aeronaut. 2023, 36, 32–42. [Google Scholar] [CrossRef]
- Caradonna, F.X.; Tung, C.; Caradonna, F.X.; Tung, C. Experimental and Analytical Studies of a Model Helicopter Rotor in Hover. In Proceedings of the European Rotorcraft and Powered Lift Aircraft Forum, Bristol, UK, 16 September 1981. [Google Scholar]
- Doerffer, P.; Szulc, O.; Doerffer, P.; Szulc, O. Numerical Simulation of Model Helicopter Rotor in Hover. Sci. Bull. Acad. Comput. Cent. Gdan. 2008, 12, 227–236. [Google Scholar]
- Steven, R.W.; Theodore, H.O. A Study of the Compressible Flow through a Diffusing S-Duct; NASA Technical Memorandum: Washington, DC, USA, 1993; p. 106411. [Google Scholar]
- Cummings, R.M.; Forsythe, J.R.; Morton, S.A.; Squires, K.D. Computational Challenges in High Angle of Attack Flow Prediction. Prog. Aerosp. Sci. 2003, 39, 369–384. [Google Scholar] [CrossRef]
- Gao, L.; Xi, G.; Zhou, L. Experimental and Computational Investigation of Flows in a Vaned Diffuser Under Stage Environment. Acta Mech. Sin. 2005, 37, 110–119. (In Chinese) [Google Scholar]
- Civil Aeronautics Manual 0434: Airplane Airworthiness; United States Civil Aeronautics Administration: Washington, DC, USA, 1941.
Parameter | Value |
---|---|
Blades | 3 |
Diameter (m) | 7.62 |
Chord (constant) (m) | 0.3556 |
Twist (spinner to tip) (°) | 36° |
Parameter | Value |
---|---|
Inner diameter | 0.36 D |
Outer diameter | D (0.29 m) |
L | 2.72 D |
Parameter | Value |
---|---|
Blades | 2 |
Radius (m) | 1.143 |
Chord (constant) (m) | 0.05 |
Aspect ratio | 6 |
Twist (°) | 0 |
Parameter | Value |
---|---|
Ambient pressure (Pa) | 101,325 |
Pressure exit—engine duct (pa) | 90,000 |
Pressure exit—scavenge duct (pa) | 94,500 |
Ambient temperature (T) | 288.15 |
Time step size(s) | 2.83 × 10−4 |
Rotary velocity (rpm) | 589 |
Gust velocity (m/s) | −12, −6, 0, 6, 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; He, X.; Zhang, Y.; Cheng, D.; Wang, Z.; Huang, Y.; Tan, H. Investigation of the Internal Flow Characteristics of a Tiltrotor Aircraft Engine Inlet in a Gust Environment. Aerospace 2024, 11, 342. https://doi.org/10.3390/aerospace11050342
Zhu H, He X, Zhang Y, Cheng D, Wang Z, Huang Y, Tan H. Investigation of the Internal Flow Characteristics of a Tiltrotor Aircraft Engine Inlet in a Gust Environment. Aerospace. 2024; 11(5):342. https://doi.org/10.3390/aerospace11050342
Chicago/Turabian StyleZhu, Haicheng, Xiaoming He, Yue Zhang, Daishu Cheng, Ziyun Wang, Yufeng Huang, and Huijun Tan. 2024. "Investigation of the Internal Flow Characteristics of a Tiltrotor Aircraft Engine Inlet in a Gust Environment" Aerospace 11, no. 5: 342. https://doi.org/10.3390/aerospace11050342
APA StyleZhu, H., He, X., Zhang, Y., Cheng, D., Wang, Z., Huang, Y., & Tan, H. (2024). Investigation of the Internal Flow Characteristics of a Tiltrotor Aircraft Engine Inlet in a Gust Environment. Aerospace, 11(5), 342. https://doi.org/10.3390/aerospace11050342