Experimental–Numerical Comparison of H2–Air Detonations: Influence of N2 Chemistry and Diffusion Effects
Abstract
:1. Introduction
2. Numerical Methodology
2.1. Governing Equations
2.2. Chemical Kinetic Models
2.3. Computational Domain and Grid System
2.4. Experimental–Numerical Comparison of the Induction Zone
3. Results and Discussion
3.1. Detonation Cell Size Metrics
3.2. Experimental vs. Numerical Induction Zone Length Evolution Along the Cellular Cycle
3.3. Experimental vs. Numerical Shock Speed Evolution as a Function of Cell Length
4. Conclusions
- The comparison between numerical and experimental detonation cell size metrics highlights the crucial role of reactive nitrogen chemistry (i.e., N2 chemistry). The chemical model incorporating reactive nitrogen (Mével 2017 with N2 chemistry) yields mean detonation cell widths of 10.8 mm (Euler) and 10.9 mm (Navier–Stokes), closely matching the experimental mean of 13 mm. In contrast, models treating nitrogen as an inert species (Mével 2017 w/o N2 chemistry and San Diego) significantly underestimate the cell size, predicting values of 7.5 mm and 4.5 mm, respectively. Although the best agreement is obtained for Mével 2017 with the N2 chemistry, its impact on cell variability () is less pronounced. These results suggest that reactive nitrogen chemistry is essential for accurately capturing the average cell structures, but it is less important to capture the cell variability.
- Analysis of the local induction zone length () dynamics as a function of the relative detonation speed (D/DCJ) reveals that the simulations conducted with the Mével 2017 model with reactive nitrogen chemistry effectively reproduces both the range and the trend of over a detonation cell cycle. In contrast, simulations conducted without N2 chemistry tend to systematically under-predict . A similar trend is also observed when is analyzed with respect to the normalized cell length (), which further emphasizes the importance of nitrogen chemistry in accurately capturing H2–air detonation wave dynamics.
- Comparisons between Euler and Navier–Stokes simulations indicate that viscous diffusion and thermal conduction have minimal impact on the detonation structure, irrespective of the chemical model used. This extends the recent observations reported by Watanabe et al. [77] obtained on different mixtures with a different chemical model.
5. Computational Resource Utilization
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, F.; Wang, T.; Deng, X.; Dang, J.; Huang, Z.; Hu, S.; Li, Y.; Ouyang, M. Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process. Int. J. Hydrogen Energy 2021, 46, 31467–31488. [Google Scholar] [CrossRef]
- Ng, H.D.; Lee, J.H.S. Comments on explosion problems for hydrogen safety. J. Loss Prev. Process Ind. 2008, 21, 136–146. [Google Scholar] [CrossRef]
- Wolański, P. Detonative propulsion. Proc. Combust. Inst. 2013, 34, 125–158. [Google Scholar] [CrossRef]
- Kailasanath, K. Review of propulsion applications of detonation waves. AIAA J. 2000, 38, 1698–1708. [Google Scholar] [CrossRef]
- Zeldovich, Y.B. To the question of energy use of detonation combustion. J. Propuls. Power 2006, 22, 588–592. [Google Scholar] [CrossRef]
- Wintenberger, E.; Shepherd, J.E. Thermodynamic cycle analysis for propagating detonations. J. Propuls. Power 2006, 22, 694–698. [Google Scholar] [CrossRef]
- Oran, E.S.; Gamezo, V.N. Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust. Flame 2007, 148, 4–47. [Google Scholar] [CrossRef]
- Osorio, R.J. NASA’s 3D-Printed Rotating Detonation Rocket Engine Test a Success. 2023. Available online: https://www.nasa.gov/centers-and-facilities/marshall/nasas-3d-printed-rotating-detonation-rocket-engine-test-a-success/ (accessed on 28 February 2025).
- Goto, K.; Matsuoka, K.; Matsuyama, K.; Kawasaki, A.; Watanabe, H.; Itouyama, N.; Ishihara, K.; Buyakofu, V.; Noda, T.; Kasahara, J.; et al. Space Flight Demonstration of Rotating Detonation Engine Using Sounding Rocket S-520-31. J. Spacecr. Rockets 2023, 60, 273–285. [Google Scholar] [CrossRef]
- Sato, T.; Matsuoka, K.; Itouyama, N.; Yasui, M.; Matsuyama, K.; Ide, Y.; Nakata, K.; Suzuki, Y.; Ishibashi, R.; Suzuki, S.; et al. Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-34: Performance of Rotating Detonation Engine Using Liquid Propellants. In Proceedings of the AIAA SCITECH 2025 Forum, Orlando, FL, USA, 6–10 January 2025. Article No. 174. [Google Scholar] [CrossRef]
- Pandey, K.; Debnath, P. Review on recent advances in pulse detonation engines. J. Combust. 2016, 2016, 4193034. [Google Scholar] [CrossRef]
- Kailasanath, K. Recent developments in the research on pulse detonation engines. AIAA J. 2003, 41, 145–159. [Google Scholar] [CrossRef]
- Yi, T.H.; Lou, J.; Turangan, C.; Choi, J.Y.; Wolanski, P. Propulsive performance of a continuously rotating detonation engine. J. Propuls. Power 2011, 27, 171–181. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, D.; Wang, J. Progress of continuously rotating detonation engines. Chin. J. Aeronaut. 2016, 29, 15–29. [Google Scholar] [CrossRef]
- Schwer, D.; Kailasanath, K. Numerical investigation of the physics of rotating-detonation-engines. Proc. Combust. Inst. 2011, 33, 2195–2202. [Google Scholar] [CrossRef]
- Raman, V.; Prakash, S.; Gamba, M. Nonidealities in rotating detonation engines. Annu. Rev. Fluid Mech. 2023, 55, 639–674. [Google Scholar] [CrossRef]
- Xu, X.; Han, Q.; Zhang, Y. Numerical Investigation of the Effect of Equivalent Ratio on Detonation Characteristics and Performance of CH4/O2 Rotating Detonation Rocket Engine. Aerospace 2025, 12, 68. [Google Scholar] [CrossRef]
- Pal, P.; Demir, S.; Kundu, P.; Som, S. Large-eddy simulations of methane-oxygen combustion in a rotating detonation rocket engine. In Proceedings of the AIAA Propulsion and Energy 2021 Forum, Virtual Event, 9–11 August 2021. Paper 3642. [Google Scholar] [CrossRef]
- Wei, H.; Kayser, T.; Bach, E.; Paschereit, C.O.; Bohon, M.D. Comparative Analysis of Total Pressure Measurement Techniques in Rotating Detonation Combustors. J. Eng. Gas Turbine. Power 2024, 146, 111022. [Google Scholar] [CrossRef]
- Sridhara, S.R.; Andreini, A.; Polanka, M.D.; Bohon, M.D. The impact of film cooling on the heat release within a rotating detonation combustor. Appl. Energy Combust. Sci. 2024, 20, 100300. [Google Scholar] [CrossRef]
- Ramanagar Sridhara, S.; Andreini, A.; Polanka, M.D.; Bohon, M.D. LES Investigation of Film Cooling in Rotating Detonation Combustors. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, London, UK, 24–28 June 2024; American Society of Mechanical Engineers: New York, NY, USA, 2024; Volume 87998, p. V007T11A005. [Google Scholar] [CrossRef]
- Nikitin, V.F.; Mikhalchenko, E.V. Safety of a rotating detonation engine fed by acetylene–oxygen mixture launching stage. Acta Astronaut. 2022, 194, 496–503. [Google Scholar] [CrossRef]
- Middha, P.; Hansen, O.R. Using computational fluid dynamics as a tool for hydrogen safety studies. J. Loss Prev. Process Ind. 2009, 22, 295–302. [Google Scholar] [CrossRef]
- Grüne, J.; Kuznetsov, M.; Lelyakin, A.; Jordan, T. Spontaneous ignition processes due to high-pressure hydrogen release in air. In Proceedings of the International Conference on Hydrogen Safety 2011, San Francisco, CA, USA, 12–14 September 2011. [Google Scholar]
- Lee, J. The Detonation Phenomenon; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Watanabe, H.; Matsuo, A.; Chinnayya, A.; Itouyama, N.; Kawasaki, A.; Matsuoka, K.; Kasahara, J. Lagrangian dispersion and averaging behind a two-dimensional gaseous detonation front. J. Fluid Mech. 2023, 968, A28. [Google Scholar] [CrossRef]
- Tsuboi, N.; Katoh, S.; Hayashi, A.K. Three-dimensional numerical simulation for hydrogen/air detonation: Rectangular and diagonal structures. Proc. Combust. Inst. 2002, 29, 2783–2788. [Google Scholar] [CrossRef]
- Crane, J.; Lipkowicz, J.T.; Shi, X.; Wlokas, I.; Kempf, A.M.; Wang, H. Three-dimensional detonation structure and its response to confinement. Proc. Combust. Inst. 2023, 39, 2915–2923. [Google Scholar] [CrossRef]
- Crane, J.; Lipkowicz, J.T.; Shi, X.; Wlokas, I.; Kempf, A.M.; Wang, H. Detonation thermodynamic state statistics: 2D and 3D simulations in hydrogen-oxygen. In Proceedings of the 29th ICDERS, Siheung, Republic of Korea, 23–28 July 2023. Article No. 244. [Google Scholar]
- Mazaheri, K.; Mahmoudi, Y.; Radulescu, M.I. Diffusion and hydrodynamic instabilities in gaseous detonations. Combust. Flame 2012, 159, 2138–2154. [Google Scholar] [CrossRef]
- Xiao, Q.; Sow, A.; Maxwell, B.M.; Radulescu, M.I. Effect of boundary layer losses on 2D detonation cellular structures. Proc. Combust. Inst. 2021, 38, 3641–3649. [Google Scholar] [CrossRef]
- Ullman, M.; Prakash, S.; Barwey, S.; Raman, V. Detonation structure in the presence of mixture stratification using reaction-resolved simulations. Combust. Flame 2024, 264, 113427. [Google Scholar] [CrossRef]
- Taylor, B.; Kessler, D.; Gamezo, V.; Oran, E. Numerical simulations of hydrogen detonations with detailed chemical kinetics. Proc. Combust. Inst. 2013, 34, 2009–2016. [Google Scholar] [CrossRef]
- Choi, J.; Ma, F.; Yang, V. Some numerical issues on simulation of detonation cell structures. Combust. Explos. Shock Waves 2008, 44, 560–578. [Google Scholar] [CrossRef]
- Weng, Z.; Mével, R. Dynamics of detonation cellular structure in linear and nonlinear instability regimes. Proc. Combust. Inst. 2024, 40, 105438. [Google Scholar] [CrossRef]
- Weng, Z.; Mével, R. Implementation of an OpenFOAM solver for shock and detonation simulation at high pressure. Comput. Fluids 2023, 265, 106012. [Google Scholar] [CrossRef]
- Monnier, V.; Rodriguez, V.; Vidal, P.; Zitoun, R. An analysis of three-dimensional patterns of experimental detonation cells. Combust. Flame 2022, 245, 112310. [Google Scholar] [CrossRef]
- Hencel, R.; Abbate, S.; Longer, M.; Cho, K.Y. High-speed imaging of gaseous detonations in rectangular curved channels with representative widths for RDEs. In Proceedings of the AIAA SCITECH 2025 Forum, Orlando, FL, USA, 6–10 January 2025. Paper 170. [Google Scholar] [CrossRef]
- Pintgen, F.; Eckett, C.A.; Austin, J.M.; Shepherd, J.E. Direct observations of reaction zone structure in propagating detonations. Combust. Flame 2003, 133, 211–229. [Google Scholar] [CrossRef]
- Rojas Chavez, S.B.; Chatelain, K.P.; Lacoste, D.A. Two-dimensional visualization of induction zone in hydrogen detonations. Combust. Flame 2023, 255, 112905. [Google Scholar] [CrossRef]
- Alicherif, M.; Rojas Chavez, S.B.; Chatelain, K.P.; Guiberti, T.F.; Lacoste, D.A. Experimental characterization of the cell cycle for multicellular detonations. Combust. Flame 2024, 266, 113553. [Google Scholar] [CrossRef]
- Rojas Chavez, S.; Chatelain, K.P.; Alicherif, M.; Lacoste, D.A. Characterization of detonation waves by simultaneous OH and NO planar laser-induced fluorescence. Appl. Energy Combust. Sci. 2024, 18, 100257. [Google Scholar] [CrossRef]
- Chatelain, K.P.; He, Y.; Mével, R.; Lacoste, D.A. Effect of the reactor model on steady detonation modeling. Shock Waves 2021, 31, 323–335. [Google Scholar] [CrossRef]
- Chatelain, K.P.; Rojas Chavez, S.B.; Vargas, J.; Lacoste, D.A. Towards laser-induced fluorescence of nitric oxide in detonation. Shock Waves 2023, 33, 179–189. [Google Scholar] [CrossRef]
- Sankar, V.; Chatelain, K.P.; Melguizo-Gavilanes, J.; Lacoste, D.A. Validation of high speed reactive flow solver in OpenFOAM with detailed chemistry. OpenFOAM J. 2024, 4, 1–25. [Google Scholar] [CrossRef]
- Van Beck, C.; Raman, V. NOx formation processes in rotating detonation engines. Front. Aerosp. Eng. 2024, 3, 1335906. [Google Scholar]
- Schwer, D.A.; Kailasanath, K. Characterizing NOx emissions for air-breathing rotating detonation engines. In Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, 25–27 July 2016. Article No. 4779. [Google Scholar] [CrossRef]
- Djordjevic, N.; Hanraths, N.; Gray, J.; Berndt, P.; Moeck, J. Numerical study on the reduction of NOx emissions from pulse detonation combustion. J. Eng. Gas Turbines Power 2018, 140, 041504. [Google Scholar] [CrossRef]
- Yungster, S.; Radhakrishnan, K.; Breisacher, K. Computational study of NOx formation in hydrogen-fuelled pulse detonation engines. Combust. Theory Model. 2006, 10, 981–1002. [Google Scholar] [CrossRef]
- Oran, E.; Boris, J.; Young, T.; Flanigan, M.; Burks, T.; Picone, M. Numerical simulations of detonations in hydrogen-air and methane-air mixtures. Proc. Combust. Inst. 1981, 18, 1641–1649. [Google Scholar] [CrossRef]
- Heidari, A.; Wen, J.X. Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture. Int. J. Hydrogen Energy 2014, 39, 21317–21327. [Google Scholar] [CrossRef]
- Kraposhin, M.; Bovtrikova, A.; Strijhak, S. Adaptation of Kurganov-Tadmor numerical scheme for applying in combination with the PISO method in numerical simulation of flows in a wide range of Mach numbers. Procedia Comput. Sci. 2015, 66, 43–52. [Google Scholar] [CrossRef]
- Kraposhin, M.V.; Banholzer, M.; Pfitzner, M.; Marchevsky, I.K. A hybrid pressure-based solver for nonideal single-phase fluid flows at all speeds. Int. J. Numer. Methods Fluids 2018, 88, 79–99. [Google Scholar] [CrossRef]
- Sankar, V.; Chatelain, K.P.; Lacoste, D.A. Evaluation of chemical kinetic models for simulations of hydrogen detonations by comparison with experimental data. Appl. Energy Combust. Sci. 2025, 21, 100306. [Google Scholar] [CrossRef]
- Melguizo-Gavilanes, J.; Rodriguez, V.; Vidal, P.; Zitoun, R. Dynamics of detonation transmission and propagation in a curved chamber: A numerical and experimental analysis. Combust. Flame 2021, 223, 460–473. [Google Scholar] [CrossRef]
- Kurganov, A.; Tadmor, E. New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 2000, 160, 241–282. [Google Scholar] [CrossRef]
- Browne, S.; Ziegler, J.; Bitter, N.; Schmidt, B.; Lawson, J.; Shepherd, J. Numerical Tools for Shock and Detonation Wave Modeling; Technical Report; Explosion Dynamics Laboratory, GALCIT: Pasadena, CA, USA, 2021. [Google Scholar]
- Ng, H.D.; Ju, Y.; Lee, J.H.S. Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis. Int. J. Hydrogen Energy 2007, 32, 93–99. [Google Scholar] [CrossRef]
- Zhou, C.W.; Li, Y.; Burke, U.; Banyon, C.; Somers, K.P.; Ding, S.; Khan, S.; Hargis, J.W.; Sikes, T.; Mathieu, O.; et al. An experimental and chemical kinetic modeling study of 1, 3-butadiene combustion: Ignition delay time and laminar flame speed measurements. Combust. Flame 2018, 197, 423–438. [Google Scholar] [CrossRef]
- Burke, M.P.; Chaos, M.; Ju, Y.; Dryer, F.L.; Klippenstein, S.J. Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 2012, 44, 444–474. [Google Scholar] [CrossRef]
- Zhu, Y.; Curran, H.J.; Girhe, S.; Murakami, Y.; Pitsch, H.; Senecal, K.; Yang, L.; Zhou, C.W. The combustion chemistry of ammonia and ammonia/hydrogen mixtures: A comprehensive chemical kinetic modeling study. Combust. Flame 2024, 260, 113239. [Google Scholar] [CrossRef]
- Hong, Z.; Davidson, D.F.; Hanson, R.K. An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combust. Flame 2011, 158, 633–644. [Google Scholar] [CrossRef]
- Zhang, X.; Yalamanchi, K.K.; Sarathy, S.M. Combustion chemistry of ammonia/C1 fuels: A comprehensive kinetic modeling study. Fuel 2023, 341, 127676. [Google Scholar] [CrossRef]
- Konnov, A.A. Yet another kinetic mechanism for hydrogen combustion. Combust. Flame 2019, 203, 14–22. [Google Scholar] [CrossRef]
- Li, X.; You, X.; Wu, F.; Law, C.K. Uncertainty analysis of the kinetic model prediction for high-pressure H2/CO combustion. Proc. Combust. Inst. 2015, 35, 617–624. [Google Scholar] [CrossRef]
- Mével, R.; Davidenko, D.; Austin, J.; Pintgen, F.; Shepherd, J.E. Application of a laser induced fluorescence model to the numerical simulation of detonation waves in hydrogen–oxygen–diluent mixtures. Int. J. Hydrogen Energy 2014, 39, 6044–6060. [Google Scholar] [CrossRef]
- Mével, R.; Javoy, S.; Lafosse, F.; Chaumeix, N.; Dupré, G.; Paillard, C.E. Hydrogen–nitrous oxide delay times: Shock tube experimental study and kinetic modelling. Proc. Combust. Inst. 2009, 32, 359–366. [Google Scholar] [CrossRef]
- Melguizo-Gavilanes, J.; Coronel, S.; Mével, R.; Shepherd, J.E. Dynamics of ignition of stoichiometric hydrogen-air mixtures by moving heated particles. Int. J. Hydrogen Energy 2017, 42, 7380–7392. [Google Scholar] [CrossRef]
- Melguizo-Gavilanes, J.; Boeck, L.R.; Mével, R.; Shepherd, J.E. Hot surface ignition of stoichiometric hydrogen-air mixtures. Int. J. Hydrogen Energy 2017, 42, 7393–7403. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, W.; Vandewalle, L.; Xu, R.; Smith, G.; Wang, H. Foundational Fuel Chemistry Model Version 2.0 (FFCM-2). 2023. Available online: https://web.stanford.edu/group/haiwanglab/FFCM2 (accessed on 28 September 2024).
- Xu, R.; Dammati, S.S.; Shi, X.; Genter, E.S.; Jozefik, Z.; Harvazinski, M.E.; Lu, T.; Poludnenko, A.Y.; Sankaran, V.; Kerstein, A.R.; et al. Modeling of high-speed, methane-air, turbulent combustion, Part II: Reduced methane oxidation chemistry. Combust. Flame 2024, 263, 113380. [Google Scholar] [CrossRef]
- Varga, T.; Nagy, T.; Olm, C.; Zsély, I.G.; Pálvölgyi, R.; Valkó, É.; Vincze, G.; Cserháti, M.; Curran, H.J.; Turányi, T. Optimization of a hydrogen combustion mechanism using both direct and indirect measurements. Proc. Combust. Inst. 2015, 35, 589–596. [Google Scholar] [CrossRef]
- University of California at San Diego. Chemical-Kinetic Mechanisms for Combustion Applications. 2016. Available online: https://web.eng.ucsd.edu/mae/groups/combustion/research_mechanisms.html (accessed on 28 September 2024).
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, W.C., Jr.; et al. GRI 3.0 Mechanism. 1999. Available online: http://combustion.berkeley.edu/gri-mech/version30/text30.html (accessed on 28 February 2025).
- Ng, H.; Radulescu, M.; Higgins, A.J.; Nikiforakis, N.; Lee, J.H.S. Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics. Combust. Theory Model. 2005, 9, 385–401. [Google Scholar] [CrossRef]
- Shi, L.; Shen, H.; Zhang, P.; Zhang, D.; Wen, C. Assessment of vibrational non-equilibrium effect on detonation cell size. Combust. Sci. Technol. 2017, 189, 841–853. [Google Scholar] [CrossRef]
- Watanabe, H.; Matsuo, A.; Chinnayya, A.; Itouyama, N.; Matsuoka, K.; Kasahara, J. Lagrangian characterization of induction and reaction timescales in a cellular gaseous detonation. Phys. Fluids 2025, 37, 026106. [Google Scholar] [CrossRef]
- Machida, T.; Asahara, M.; Hayashi, A.K.; Tsuboi, N. Three-dimensional simulation of deflagration-to-detonation transition with a detailed chemical reaction model. Combust. Sci. Technol. 2014, 186, 1758–1773. [Google Scholar] [CrossRef]
- Smith, J.; Schmitt, C.; Xiao, Q.; Maxwell, B. On the nature of transverse waves in marginal hydrogen detonation simulations using boundary layer loss modeling and detailed chemistry. Combust. Flame 2024, 268, 113598. [Google Scholar] [CrossRef]
- Saxena, P.; Williams, F.A. Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. Combust. Flame 2006, 145, 316–323. [Google Scholar] [CrossRef]
- Shi, X.; Meagher, P.A.; Crane, J.; Dammati, S.S.; Zhao, X.; Poludnenko, A.Y.; Wang, H. On cellular multiplicity of detonations in confined channels. In Proceedings of the 28th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Naples, Italy, 19–24 June 2022. Article No. 207. [Google Scholar]
- Rojas Chavez, S.B.; Chatelain, K.P.; Lacoste, D.A. Induction zone length measurements by laser-induced fluorescence of nitric oxide in hydrogen-air detonations. Proc. Combust. Inst. 2023, 39, 2885–2894. [Google Scholar] [CrossRef]
- Sankar, V.; Chatelain, K.P.; Melguizo-Gavilanes, J.; Rojas Chavez, S.B.; Alicherif, M.; Lacoste, D.A. Experimental and Numerical Comparison of Weakly Unstable Detonation using Planar Laser-Induced Fluorescence of Nitric Oxide Imaging. In Proceedings of the 29th ICDERS, Siheung, Republic of Korea, 23–28 July 2023. Article No. 93. [Google Scholar]
- Rojas Chavez, S.B.; Chatelain, K.P.; Guiberti, T.F.; Mével, R.; Lacoste, D.A. Effect of the excitation line on hydroxyl radical imaging by laser induced fluorescence in hydrogen detonations. Combust. Flame 2021, 229, 111399. [Google Scholar] [CrossRef]
- Zhang, Y.; Mathieu, O.; Petersen, E.L.; Bourque, G.; Curran, H.J. Assessing the predictions of a NOx kinetic mechanism on recent hydrogen and syngas experimental data. Combust. Flame 2017, 182, 122–141. [Google Scholar] [CrossRef]
Mathematical Term | Scheme | Order |
---|---|---|
Partial time derivative, | CrankNicolson | |
Gradient, | Gauss linear | |
Divergence, | Gauss vanAlbada | |
Laplacian, | Gauss linear | |
Ordinary time derivative, | rosenbrock34 | (effectively) |
Models | , m | , m | , s | , mm | Relevant Studies | ||
---|---|---|---|---|---|---|---|
Aramco 3.0 | 775 | 239 | 2.1 | 36 | 6.6 | 3.1 | - |
Burke 2012 | 792 | 241 | 2.2 | 37 | 6.6 | 3.1 | Refs. [33,54,76] |
Zhu 2024 | 789 | 212 | 2.1 | 36 | 6.6 | 3.8 | - |
Hong 2011 | 783 | 233 | 2.1 | 36 | 6.9 | 3.3 | Refs. [54,77,78] |
KAUST-Mech-2023 | 807 | 205 | 2.2 | 36 | 7.0 | 4.0 | - |
Konnov 2019 | 751 | 194 | 2.0 | 34 | 6.7 | 3.7 | - |
Li 2015 | 708 | 218 | 1.9 | 33 | 6.5 | 3.3 | - |
Mével 2014 | 550 | 199 | 1.5 | 26 | 6.2 | 2.6 | Refs. [54,55,66] |
Mével 2017 | 553 | 207 | 1.5 | 26 | 6.2 | 2.6 | Refs. [69] |
FFCM-2 | 811 | 242 | 2.2 | 38 | 6.8 | 3.2 | Refs. [54] |
San Diego | 753 | 208 | 2.0 | 34 | 6.4 | 3.8 | Refs. [79,80] |
GRI 3.0 | 781 | 217 | 2.1 | 36 | 6.8 | 3.3 | - |
Varga 2015 | 761 | 234 | 2.1 | 36 | 6.6 | 3.1 | - |
Case | Models | CJ Speed (m/s) | Grid Density in Uniform Resolution (Points/) | ||
---|---|---|---|---|---|
I | Mével 2017 (with NOx—E) | 1938 | 80 | ||
II | Mével 2017 (with NOx—NS) | 1938 | 80 | ||
III | Mével 2017 (w/o NOx—NS) | 1938 | 80 | ||
IV | San Diego (w/o NOx—E) | 1944 | 60 | ||
V | San Diego (w/o NOx—NS) | 1944 | 60 |
Case | , mm | ||
---|---|---|---|
Experiments [41] | 13 ± 1 | 0.38 ± 0.2 | |
Mével 2017 (with NOx—E) | 10.8 | 0.45 | |
Mével 2017 (with NOx—NS) | 10.9 | 0.44 | |
2D Simulations | Mével 2017 (w/o NOx—NS) | 7.5 | 0.59 |
San Diego (w/o NOx—E) | 4.6 | 0.38 | |
San Diego (w/o NOx—NS) | 4.5 | 0.32 |
Chemical Models | Grid Density (Points/) | Number of Grids † ( × ) | CPU Hours (in Millions) |
---|---|---|---|
Mével 2017 (with N2 chemistry) | 80 | 2474 × 7971 | 0.25 |
40–80 | - | 0.96 * | |
Mével 2017 (w/o N2 chemistry) | 80 | 2474 × 7971 | 0.22 |
40–80 | - | 0.56 * | |
San Diego (w/o N2 chemistry) | 60 | 1794 × 3028 | 0.05 |
40–60 | - | 0.21 * | |
Total (results presented in this study, see Table 3) | 0.52 | ||
Total (all simulations *) | 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankar, V.; Chatelain, K.P.; Lacoste, D.A. Experimental–Numerical Comparison of H2–Air Detonations: Influence of N2 Chemistry and Diffusion Effects. Aerospace 2025, 12, 297. https://doi.org/10.3390/aerospace12040297
Sankar V, Chatelain KP, Lacoste DA. Experimental–Numerical Comparison of H2–Air Detonations: Influence of N2 Chemistry and Diffusion Effects. Aerospace. 2025; 12(4):297. https://doi.org/10.3390/aerospace12040297
Chicago/Turabian StyleSankar, Vigneshwaran, Karl P. Chatelain, and Deanna A. Lacoste. 2025. "Experimental–Numerical Comparison of H2–Air Detonations: Influence of N2 Chemistry and Diffusion Effects" Aerospace 12, no. 4: 297. https://doi.org/10.3390/aerospace12040297
APA StyleSankar, V., Chatelain, K. P., & Lacoste, D. A. (2025). Experimental–Numerical Comparison of H2–Air Detonations: Influence of N2 Chemistry and Diffusion Effects. Aerospace, 12(4), 297. https://doi.org/10.3390/aerospace12040297