Application of Fixed Point Theorem to Solvability for Non-Linear Fractional Hadamard Functional Integral Equations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- iff ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- ;
- (vi)
- Suppose that a sequence of closed sets obtained by in such a way contains , where and that , then, we are able to conclude that is non-empty.
3. New Results
- The maps are continuous. Furthermore, there are continuous maps , such that
- There are the continuous maps , for , in such a way that
- The maps , act continuously from the set . Furthermore, there are non-decreasing maps such that
- There is a solution for in the following inequalityMoreover,
- Step (1):We claim that where .
- Step (2):We claim that
- Step (3):We show that are continuous in
- Step (4):We prove that fulfill Darbo’s condition on
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, R.P.; O’Regan, D.; Wong, P.J.Y. Positive Solutions of Differential, Difference and Integral Equations; Kluwer Academic: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Banaś, J.; Chlebowicz, A. On existence of integrable solutions of a functional integral equation under Carathéodory conditions. Nonlinear Anal. Theory Methods Appl. 2009, 70, 3172–3179. [Google Scholar] [CrossRef]
- Barnett, A.; Greengard, L.; Hagstrom, T. High-order discretization of a stable time-domain integral equation for 3D acoustic scattering. J. Comput. Phys. 2020, 402, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Burton, T.A.; Zhang, B. Fixed points and stability of an integral equation: Nonuniqueness. Appl. Math. Lett. 2004, 17, 839–846. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Radiative Transfer; Oxford University Press: London, UK, 1950. [Google Scholar]
- Corduneanu, C. Integral Equations and Applications; Cambridge University Press: New York, NY, USA, 1991. [Google Scholar]
- Deep, A.; Dhiman, D.; Hazarika, B.; Abbas, S. Solvability for two dimensional functional integral equations via Petryshyn’s fixed point theorem. Rev. Real Acad. Ciencias Exactas Fis. Nat. Ser. A Mat. 2021, 115, 160. [Google Scholar] [CrossRef]
- Pathak, H.K. A study on some problems on existence of solutions for nonlinear functional-integral equations. Acta Math. Sci. 2013, 33, 1305–1313. [Google Scholar]
- Pathak, H.K. Study on existence of solutions for some nonlinear functional-integral equations with applications. Math. Commun. 2013, 18, 97–107. [Google Scholar]
- Debnath, P.; Konwar, N.; Radenović, S. Metric Fixed Point Theory, Applications in Science, Engineering and Behavioural Sciences; Forum for Interdisciplinary Mathematics; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Dhage, B.C. On α-condensing mappings in Banach algebras. Math. Stud. 1994, 63, 146–152. [Google Scholar]
- Guo, D.; Lakshmikantham, V.; Liu, X.Z. Nonlinear Integral Equations in Abstract Spaces; Kluwer Academic: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Guerra, R.C. On the solution of a class of integral equations using new weighted convolutions. J. Integral Equ. Appl. 2022, 34, 39–58. [Google Scholar] [CrossRef]
- Hu, S.; Khavani, M.; Zhuang, W. Integral equations arising in the kinetic theory of gases. Appl. Anal. 1989, 34, 261–266. [Google Scholar] [CrossRef]
- Hu, X.L.; Yan, J.R. The global attractivity and asymptotic stability of solution of a nonlinear integral equation. J. Math. Anal. Appl. 2006, 321, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Jangid, K.; Purohit, S.D.; Agarwal, R. ON Gruss Type Inequality Involving a Fractional Integral Operator with a Multi-Index Mittag–Leffler Function as a Kernel. Appl. Math. Inf. Sci. 2022, 16, 269–276. [Google Scholar]
- Karimi, A.; Maleknejad, K.; Ezzati, R. Numerical solutions of system of two-dimensional Volterra integral equations via Legendre wavelets and convergence. Appl. Numer. Math. 2020, 156, 228–241. [Google Scholar] [CrossRef]
- Kelly, C.T. Approximation of solutions of some quadratic integral equations in transport theory. J. Integral Equ. 1982, 4, 221–237. [Google Scholar]
- Liu, Z.; Kang, S.M. Existence of monotone solutions for a nonlinear quadratic integral equation of Volterra type. Rocky Mt. J. Math. 2007, 37, 1971–1980. [Google Scholar] [CrossRef]
- Liu, Z.; Kang, S.M. Existence and asymptotic stability of solutions to a functional-integral equation. Taiwan. J. Math. 2007, 11, 187–196. [Google Scholar] [CrossRef]
- Maleknejad, K.; Mollapourasl, R.; Nouri, K. Study on existence of solutions for some nonlinear functional integral equations. Nonlinear Anal. Theory Methods Appl. 2008, 69, 2582–2588. [Google Scholar] [CrossRef]
- Maleknejad, K.; Nouri, K.; Mollapourasl, R. Existence of solutions for some nonlinear integral equations. Commun. Nonlinear Sci. Numer. Simulat. 2009, 14, 2559–2564. [Google Scholar] [CrossRef]
- Maleknejad, K.; Nouri, K.; Mollapourasl, R. Investigation on the existence of solutions for some nonlinear functional-integral equations. Nonlinear Anal. Theory Methods Appl. 2009, 71, e1575–e1578. [Google Scholar] [CrossRef]
- Mishra, L.N.; Agarwal, R.P.; Sen, M. Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erde´lyi-Kober fractional integrals on the unbounded interval. Prog. Fract. Differ. Appl. 2016, 2, 153–168. [Google Scholar] [CrossRef]
- Mishra, L.N.; Srivastava, H.M.; Sen, M. Existence results for some nonlinear functional-integral equations in Banach algebra with applications. Int. J. Anal. Appl. 2016, 11, 1–10. [Google Scholar]
- Mishra, L.N.; Sen, M.; Mohapatra, R.N. On Existence Theorems for Some Generalized Nonlinear Functional-Integral Equations with Applications. Filomat 2017, 31, 2081–2091. [Google Scholar]
- Mishra, L.N.; Sen, M. On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order. Appl. Math. Comput. 2016, 285, 174–183. [Google Scholar] [CrossRef]
- Najafi, E. Nyström-quasilinearization method and smoothing transformation for the numerical solution of nonlinear weakly singular Fredholm integral equations. J. Comput. Appl. Math. 2019, 368, 1–13. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Fariborzi Araghi, M.A.; Sidorov, D. Dynamical strategy on homotopy perturbation method for solving second kind integral equations using the CESTAC method. J. Comput. Appl. Math. 2022, 411, 377–427. [Google Scholar] [CrossRef]
- O’Regan, D. Existence results for nonlinear integral equations. J. Math. Anal. Appl. 1995, 192, 705–726. [Google Scholar] [CrossRef]
- Pan, Y.; Huang, J. Extrapolation method for solving two-dimensional volterral integral equations of the second kind. Appl. Math. Comput. 2020, 367, 1–15. [Google Scholar] [CrossRef]
- Pathak, H.K. Remarks on some fixed point theorems of Dhage. Appl. Math. Lett. 2012, 25, 1969–1975. [Google Scholar] [CrossRef] [Green Version]
- Pathak, V.K.; Mishra, L.N. Existence of solution of Erde´lyi-Kober fractional integral equations using measure of non-compactness. Discontinuity Nonlinearity Complex. 2022, in press.
- Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New Fractional Integral Inequalities for Convex Functions Pertaining to Caputo-Fabrizio Operator. Fractal Fract. 2022, 6, 171. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Hamed, Y.S. New Riemann–Liouville Fractional-Order Inclusions for Convex Functions via Integral-Valued Setting Associated with Pseudo-Order Relations. Fractal Fract. 2022, 6, 212. [Google Scholar] [CrossRef]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Xiao-yong, Z. A new strategy for the numerical solution of nonlinear Volterra integral equations with vanishing delays. Appl. Math. Comput. 2020, 365, 124608. [Google Scholar] [CrossRef]
- Hadamard, J. Essaisur l’etude des fonctions donnees par leur developpment de Taylor. J. Pure. Appl. Math. 1892, 4, 101–186. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science BV: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Banaś, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Lecture Notes in Pure and Applied Mathmatics; Marcel Dekker: New York, NY, USA, 1980. [Google Scholar]
- Banaś, J.; Lecko, M. Fixed points of the product of operators in Banach algebra. Panamer. Math. J. 2002, 12, 101–109. [Google Scholar]
- Banaś, J.; Olszowy, L. On a class of measure of noncompactness in Banach algebras and their application to nonlinear integral equations. J. Anal. Appl. 2009, 28, 475–498. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathak, V.K.; Mishra, L.N. Application of Fixed Point Theorem to Solvability for Non-Linear Fractional Hadamard Functional Integral Equations. Mathematics 2022, 10, 2400. https://doi.org/10.3390/math10142400
Pathak VK, Mishra LN. Application of Fixed Point Theorem to Solvability for Non-Linear Fractional Hadamard Functional Integral Equations. Mathematics. 2022; 10(14):2400. https://doi.org/10.3390/math10142400
Chicago/Turabian StylePathak, Vijai Kumar, and Lakshmi Narayan Mishra. 2022. "Application of Fixed Point Theorem to Solvability for Non-Linear Fractional Hadamard Functional Integral Equations" Mathematics 10, no. 14: 2400. https://doi.org/10.3390/math10142400
APA StylePathak, V. K., & Mishra, L. N. (2022). Application of Fixed Point Theorem to Solvability for Non-Linear Fractional Hadamard Functional Integral Equations. Mathematics, 10(14), 2400. https://doi.org/10.3390/math10142400