Fully Degenerating of Daehee Numbers and Polynomials
Abstract
:1. Introduction
2. Fully Degenerating Daehee Numbers and Polynomials
3. New Type of Higher-Order Fully Degenerating Daehee Numbers and Polynomials
4. Conclusions and Observation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, S.K.; Khan, W.A.; Araci, S.; Ahmed, S.S. New construction of type 2 degenerate central Fubini polynomials with their certain properties. Adv. Differ Equ. 2020, 587, 1–11. [Google Scholar] [CrossRef]
- Jang, L.C.; Kim, D.S.; Kim, T.; Lee, H. p-Adic integral on p associated with degenerate Bernoulli polynomials of the second kind. Adv. Diff. Equ. 2020, 278, 1–20. [Google Scholar]
- Kim, T. On degenerate Cauchy numbers and polynomials. Proc. Jangjeon Math. Soc. 2015, 18, 307–312. [Google Scholar]
- Kim, T. A note on degenerate Stirling numbers of the second kind. Proc. Jangjeon Math. Soc. 2017, 20, 319–331. [Google Scholar]
- Kim, T.; Kim, D.S.; Kim, H.-Y.; Kwon, J. Some results on degenerate Daehee and Bernoulli numbers and polynomials. Adv. Diff. Equ. 2020, 311, 1–13. [Google Scholar] [CrossRef]
- Khan, W.A.; Ahmad, M. Partially degenerate poly-Bernoulli polynomials associated with Hermite polynomials. Adv. Stud. Contemp. Math. 2018, 28, 487–496. [Google Scholar]
- Khan, W.A.; Nisar, K.S.; Acikgoz, M.; Duran, U. Multifarious implicit summation formulae of Hermite-based poly-Daehee polynomials. Appl. Math. Inf. Sci. 2018, 12, 305–310. [Google Scholar] [CrossRef]
- Khan, W.A. A note on q-analogue of degenerate Catalan numbers associated with p-adic Integral on p. Symmetry 2022, 14, 1119. [Google Scholar] [CrossRef]
- Sharma, S.K.; Khan, W.A.; Araci, S.; Ahmed, S.S. New type of degenerate Daehee polynomials of the second kind. Adv. Differ. Equ. 2020, 428, 1–14. [Google Scholar] [CrossRef]
- Catlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
- Catlitz, L. A degenerate Staudt-Clausen theorem. Arch. Math. 1967, 7, 28–33. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A note on new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 2020, 27, 227–235. [Google Scholar] [CrossRef]
- Roman, S. The umbral calculus. In Pure and Applied Mathematics, 111; Academic Press, Inc.: New York, NY, USA, 1984; p. x+193. ISBN 0-12-594380-6. [Google Scholar]
- Alam, N.; Khan, W.A.; Ryoo, C.S. A note on Bell-based Apostol-type Frobenius-Euler polynomials of complex variable with its certain applications. Mathematics 2022, 10, 2109. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albosaily, S.; Khan, W.A.; Araci, S.; Iqbal, A. Fully Degenerating of Daehee Numbers and Polynomials. Mathematics 2022, 10, 2528. https://doi.org/10.3390/math10142528
Albosaily S, Khan WA, Araci S, Iqbal A. Fully Degenerating of Daehee Numbers and Polynomials. Mathematics. 2022; 10(14):2528. https://doi.org/10.3390/math10142528
Chicago/Turabian StyleAlbosaily, Sahar, Waseem Ahmad Khan, Serkan Araci, and Azhar Iqbal. 2022. "Fully Degenerating of Daehee Numbers and Polynomials" Mathematics 10, no. 14: 2528. https://doi.org/10.3390/math10142528
APA StyleAlbosaily, S., Khan, W. A., Araci, S., & Iqbal, A. (2022). Fully Degenerating of Daehee Numbers and Polynomials. Mathematics, 10(14), 2528. https://doi.org/10.3390/math10142528