Multimode Process Monitoring Based on Modified Density Peak Clustering and Parallel Variational Autoencoder
Abstract
:1. Introduction
2. Preliminaries
2.1. Density Peak Clustering
2.2. Variational Autoencoder
3. Multimode Process Monitoring Based on MDPC-PVAE
3.1. MDPC-PVAE
Algorithm 1. MDPC. |
Input: Dataset |
Output: Cluster centers |
1: Calculate the distance between data point and . |
2: Assign the cut-off distance . |
3: Calculate the local density of each data point. |
4: Calculate the local density ratio and minimum distance of each data point. |
5: Assign the thresholds and . |
6: Determine the candidate cluster center set . |
7: Calculate the composite indicator . |
8: Sort the in descending order and record the index order . |
9: Determine selection sequence of cluster centers . |
10: for R = 1:P Calculate the total entropy . End |
11: Find the minimum , obtain the number of cluster centers , and determine the cluster centers . |
12: Return . |
3.2. MDPC-PVAE for Multimode Process Monitoring
- Collect the multimode normal process data X and normalize the samples.
- Divide X into data subset using MDPC.
- Normalize the samples in the data subset and save the normalization parameters for on-line monitoring.
- Design the architecture of PVAE and train the PVAE with data subset .
- Compute the hidden features and construct the monitoring statistic .
- Calculate the control limit with a confidence level of 0.99 for each mode by KDE.
- Obtain the on-line sample and normalize it by the saved normalization parameters in off-line modeling as .
- Map to the PVAE and obtain the hidden features.
- Calculate statistics ; if each statistic is greater than its corresponding control limit , is faulty. Otherwise, is normal and record the current mode type.
4. Case Study
4.1. Tennessee Eastman Process
4.2. Semiconductor Etching Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ge, Z.; Song, Z.; Gao, F. Review of Recent Research on Data-Based Process Monitoring. Ind. Eng. Chem. Res. 2013, 52, 3543–3562. [Google Scholar] [CrossRef]
- Montazeri, A.; Ansarizadeh, M.H.; Arefi, M.M. A Data-Driven Statistical Approach for Monitoring and Analysis of Large Industrial Processes. IFAC-PapersOnLine 2019, 52, 2354–2359. [Google Scholar] [CrossRef]
- Qin, S.J. Survey on Data-Driven Industrial Process Monitoring and Diagnosis. Annu. Rev. Control 2012, 36, 220–234. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D. Local Component Based Principal Component Analysis Model for Multimode Process Monitoring. Chin. J. Chem. Eng. 2021, 34, 116–124. [Google Scholar] [CrossRef]
- Tao, Y.; Shi, H.; Song, B.; Tan, S. A Novel Dynamic Weight Principal Component Analysis Method and Hierarchical Monitoring Strategy for Process Fault Detection and Diagnosis. IEEE Trans. Ind. Electron. 2020, 67, 7994–8004. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Y.; Sun, Z.; Huang, D. Statistical Monitoring of Wastewater Treatment Plants Using Variational Bayesian PCA. Ind. Eng. Chem. Res. 2014, 53, 3272–3282. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Zhou, H.; Qin, S.J. Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Principal Component Analysis. Zidonghua Xuebao/Acta Autom. Sin. 2010, 36, 593–597. [Google Scholar] [CrossRef]
- Chang, Y.; Ma, R.; Zhao, L.; Wang, F.; Wang, S. Online Operating Performance Evaluation for the Plant-Wide Industrial Process Based on a Three-Level and Multi-Block Method. Can. J. Chem. Eng. 2019, 97, 1371–1385. [Google Scholar] [CrossRef]
- Peng, K.; Zhang, K.; You, B.; Dong, J. Quality-Related Prediction and Monitoring of Multi-Mode Processes Using Multiple PLS with Application to an Industrial Hot Strip Mill. Neurocomputing 2015, 168, 1094–1103. [Google Scholar] [CrossRef]
- Li, Z.; Yan, X. Ensemble Learning Model Based on Selected Diverse Principal Component Analysis Models for Process Monitoring. J. Chemom. 2018, 32, e3010. [Google Scholar] [CrossRef]
- Ge, Z.; Song, Z. Online Monitoring of Nonlinear Multiple Mode Processes Based on Adaptive Local Model Approach. Control Eng. Pract. 2008, 16, 1427–1437. [Google Scholar] [CrossRef]
- Song, B.; Shi, H. Temporal-Spatial Global Locality Projections for Multimode Process Monitoring. IEEE Access 2018, 6, 9740–9749. [Google Scholar] [CrossRef]
- Ma, H.; Hu, Y.; Shi, H. A Novel Local Neighborhood Standardization Strategy and Its Application in Fault Detection of Multimode Processes. Chemom. Intell. Lab. Syst. 2012, 118, 287–300. [Google Scholar] [CrossRef]
- Verdier, G.; Ferreira, A. Adaptive Mahalanobis Distance and K-Nearest Neighbor Rule for Fault Detection in Semiconductor Manufacturing. IEEE Trans. Semicond. Manuf. 2011, 24, 59–68. [Google Scholar] [CrossRef]
- Deng, X.; Tian, X. Multimode Process Fault Detection Using Local Neighborhood Similarity Analysis. Chin. J. Chem. Eng. 2014, 22, 1260–1267. [Google Scholar] [CrossRef]
- Yu, J.; Qin, S.J. Multimode Process Monitoring with Bayesian Inference-based Finite Gaussian Mixture Models. AIChE J. 2008, 54, 1811–1829. [Google Scholar] [CrossRef]
- Xie, X.; Shi, H. Dynamic Multimode Process Modeling and Monitoring Using Adaptive Gaussian Mixture Models. Ind. Eng. Chem. Res. 2012, 51, 5497–5505. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, F.; Tan, S.; Wang, S.; Chang, Y. Novel Monitoring Strategy Combining the Advantages of the Multiple Modeling Strategy and Gaussian Mixture Model for Multimode Processes. Ind. Eng. Chem. Res. 2015, 54, 11866–11880. [Google Scholar] [CrossRef]
- Ben Khediri, I.; Weihs, C.; Limam, M. Kernel K-Means Clustering Based Local Support Vector Domain Description Fault Detection of Multimodal Processes. Expert Syst. Appl. 2012, 39, 2166–2171. [Google Scholar] [CrossRef]
- Ge, Z.; Song, Z. Multimode Process Monitoring Based on Bayesian Method. J. Chemom. 2009, 23, 636–650. [Google Scholar] [CrossRef]
- Xie, X.; Shi, H. Multimode Process Monitoring Based on Fuzzy C-Means in Locality Preserving Projection Subspace. Chin. J. Chem. Eng. 2012, 20, 1174–1179. [Google Scholar] [CrossRef]
- Luo, L.; Bao, S.; Mao, J.; Tang, D. Phase Partition and Phase-Based Process Monitoring Methods for Multiphase Batch Processes with Uneven Durations. Ind. Eng. Chem. Res. 2016, 55, 2035–2048. [Google Scholar] [CrossRef]
- Quiñones-Grueiro, M.; Prieto-Moreno, A.; Verde, C.; Llanes-Santiago, O. Data-Driven Monitoring of Multimode Continuous Processes: A Review. Chemom. Intell. Lab. Syst. 2019, 189, 56–71. [Google Scholar] [CrossRef]
- Rodriguez, A.; Laio, A. Clustering by Fast Search and Find of Density Peaks. Science. 2014, 344, 1492–1496. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhou, X.; Shi, H.; Pan, F.; Li, X.; Zhang, Y. Multimode Processes Monitoring Based on Hierarchical Mode Division and Subspace Decomposition. Can. J. Chem. Eng. 2018, 96, 2420–2430. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.; Yan, H.; Wang, Y.; Yang, W.; Tao, B. Density Peaks Clustering-Based Steady/Transition Mode Identification and Monitoring of Multimode Processes. Can. J. Chem. Eng. 2020, 98, 2137–2149. [Google Scholar] [CrossRef]
- Xu, X.; Xu, D.; Wang, X. Anomaly Detection with GRU Based Bi-Autoencoder for Industrial Mul- Timode Process. Int. J. Control. Autom. Syst. 2022, 20, 1827–1840. [Google Scholar] [CrossRef]
- Gao, H.; Wei, C.; Huang, W.; Gao, X. Multimode Process Monitoring Based on Hierarchical Mode Identification and Stacked Denoising Autoencoder. Chem. Eng. Sci. 2022, 253, 117556. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, T.; Zhan, C.; Yang, Y. Gaussian Feature Learning Based on Variational Autoencoder for Improving Nonlinear Process Monitoring. J. Process Control 2019, 75, 136–155. [Google Scholar] [CrossRef]
- Tang, P.; Peng, K.; Jiao, R. A Process Monitoring and Fault Isolation Framework Based on Variational Autoencoders and Branch and Bound Method. J. Franklin Inst. 2022, 359, 1667–1691. [Google Scholar] [CrossRef]
- Guo, F.; Wei, B.; Huang, B. A Just-in-Time Modeling Approach for Multimode Soft Sensor Based on Gaussian Mixture Variational Autoencoder. Comput. Chem. Eng. 2021, 146, 107230. [Google Scholar] [CrossRef]
- Xu, J.; Cai, Z. Gaussian Mixture Deep Dynamic Latent Variable Model with Application to Soft Sensing for Multimode Industrial Processes. Appl. Soft Comput. 2022, 114, 108092. [Google Scholar] [CrossRef]
- Li, M.; Bi, X.; Wang, L.; Han, X. A Method of Two-Stage Clustering Learning Based on Improved DBSCAN and Density Peak Algorithm. Comput. Commun. 2021, 167, 75–84. [Google Scholar] [CrossRef]
- Li, J.; Yan, X. Process Monitoring Using Principal Component Analysis and Stacked Autoencoder for Linear and Nonlinear Coexisting Industrial Processes. J. Taiwan Inst. Chem. Eng. 2020, 112, 322–329. [Google Scholar] [CrossRef]
- Bathelt, A.; Ricker, N.L.; Jelali, M. Revision of the Tennessee Eastman Process Model. IFAC-PapersOnLine 2015, 28, 309–314. [Google Scholar] [CrossRef]
- Reinartz, C.; Kulahci, M.; Ravn, O. An Extended Tennessee Eastman Simulation Dataset for Fault-Detection and Decision Support Systems. Comput. Chem. Eng. 2021, 149, 107281. [Google Scholar] [CrossRef]
- Jiang, L.; Ge, Z.; Song, Z. Semi-Supervised Fault Classification Based on Dynamic Sparse Stacked Auto-Encoders Model. Chemom. Intell. Lab. Syst. 2017, 168, 72–83. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, J.; Tan, S. A multimode process monitoring strategy via improved variational inference Gaussian mixture model based on locality preserving projections. Trans. Inst. Meas. Control 2022, 44, 1732–1743. [Google Scholar] [CrossRef]
- He, Q.P.; Wang, J. Fault Detection Using the K-Nearest Neighbor Rule for Semiconductor Manufacturing Processes. IEEE Trans. Semicond. Manuf. 2007, 20, 345–354. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, X.; Li, Y.; Feng, L. Fault Detection Strategy Based on Weighted Distance of k Nearest Neighbors for Semiconductor Manufacturing Processes. IEEE Trans. Semicond. Manuf. 2019, 32, 75–81. [Google Scholar] [CrossRef]
Fault | Description | Type |
---|---|---|
1 | A/C feed ratio, B composition constant (stream 4) | Step |
2 | B composition, A/C ratio constant (stream 4) | Step |
3 | D feed temperature (stream 2) | Step |
4 | Water inlet temperature for reactor cooling | Step |
5 | Water inlet temperature for condenser cooling | Step |
6 | A feed loss (stream 1) | Step |
7 | C header pressure loss (stream 4) | Step |
8 | A/B/C composition of stream 4 | Random variation |
9 | D feed (stream 2) temperature | Random variation |
10 | C feed (stream 4) temperature | Random variation |
11 | Cooling water inlet temperature of reactor | Random variation |
12 | Cooling water inlet temperature of separator | Random variation |
13 | Reaction kinetics | Random variation |
14 | Cooling water outlet valve of reactor | Sticking |
15 | Cooling water outlet valve of separator | Sticking |
16 | Variation coefficient of the steam supply of the heat exchange of the stripper | Random variation |
17 | Variation coefficient of heat transfer in reactor | Random variation |
18 | Variation coefficient of heat transfer in condenser | Random variation |
19 | Unknown | Unknown |
20 | Unknown | Random variation |
21 | A feed (stream 1) temperature | Random variation |
22 | E feed (stream 3) temperature | Random variation |
23 | A feed flow (stream 1) | Random variation |
24 | D feed flow (stream 2) | Random variation |
25 | E feed flow (stream 3) | Random variation |
26 | A and C feed flow (stream 4) | Random variation |
27 | Reactor cooling water flow | Random variation |
28 | Condenser cooling water flow | Random variation |
Fault | LNS-PCA | MD-kNN | GMM-SDAE | MDPC-PVAE | ||
---|---|---|---|---|---|---|
SPE | SPE | |||||
1 | 3.67/99.86 | 3.39/99.86 | 0.89/99.88 | 2.67/99.81 | 2.5/99.71 | 0.67/99.88 |
2 | 3.28/99.36 | 1.56/98.81 | 0.94/99.29 | 2.11/99.24 | 4.17/98.64 | 0.22/99.26 |
4 | 4.33/99.93 | 2.39/99.93 | 0.89/99.93 | 2.83/99.86 | 2.08/99.86 | 0.33/99.93 |
5 | 5.83/34.96 | 2.89/34.1 | 1.61/33.45 | 4.89/35.12 | 5.42/33.62 | 2.33/33.69 |
6 | 2.67/100 | 2.22/100 | 0.67/100 | 1.67/99.93 | 1.46/99.93 | 0.06/100 |
7 | 3.72/99.93 | 3.06/99.93 | 1.28/99.93 | 3/99.86 | 3.75/99.86 | 0.39/99.93 |
8 | 4.39/99.26 | 3.06/98.17 | 1.22/99.21 | 4.61/99.19 | 2.5/98.86 | 1.28/99.24 |
10 | 3.78/79.14 | 2/91.93 | 0.67/93.09 | 3/92.88 | 3.33/92.43 | 0.28/93.1 |
11 | 4.67/98.02 | 5.11/97.71 | 0.72/98.21 | 4.95/98.69 | 4.38/93.69 | 1.11/97.93 |
12 | 3.89/59.55 | 2.39/49.74 | 0.94/55.48 | 2.55/65.48 | 2.71/48.24 | 0.61/64.27 |
13 | 6.06/96.07 | 3.33/95.93 | 1.67/96.83 | 6.22/96.83 | 3.13/92.74 | 1.94/96.57 |
14 | 3.78/97.83 | 3.33/97.86 | 1.17/98.62 | 3.17/98.55 | 3.13/94.4 | 0.78/98.31 |
17 | 3/91.45 | 3/94 | 0.94/93.1 | 2.72/94.52 | 1.04/90.24 | 0.56/93.43 |
18 | 5.56/80.02 | 1.22/82.17 | 0.67/83.6 | 4.11/85.6 | 1.25/78.93 | 1.11/83.21 |
19 | 3.33/98.43 | 3.06/98.81 | 1.44/99.02 | 2.11/99 | 1.46/98.12 | 0.28/98.93 |
20 | 6.83/97.57 | 6.78/98.5 | 1.06/98.31 | 8.05/98.31 | 3.75/96.95 | 2.67/98.33 |
24 | 4.5/68.36 | 4.39/83.88 | 0.89/87.62 | 5.39/73.55 | 3.13/88.52 | 1.06/88.71 |
25 | 3.67/60.64 | 3.94/68.71 | 0.33/82 | 4.11/66.05 | 2.29/64.19 | 0.89/73.05 |
26 | 4.11/67.55 | 4.06/86.38 | 1.5/82.7 | 3.17/85.55 | 3.54/69.36 | 1.17/85.55 |
27 | 3.72/77.05 | 3.17/78.98 | 0.72/78.40 | 2.33/83.05 | 2.08/50.45 | 0.5/78.81 |
28 | 3.56/21.19 | 3/22.93 | 0.33/1.48 | 4.17/24.31 | 3.13/16.38 | 0.72/25.11 |
FDR | 4.21/82.2 | 3.21/84.68 | 0.98/84.77 | 3.71/85.49 | 2.87/81.2 | 0.9/86.05 |
Method | LNS-PCA | MD-kNN | GMM-SDAE | MDPC-PVAE |
---|---|---|---|---|
Testing time (ms) | 67,982.97 | 72,103.54 | 347.34 | 40.51 |
Fault | LNS-PCA | MD-kNN | GMM-SDAE | MDPC-PVAE | ||
---|---|---|---|---|---|---|
SPE | SPE | |||||
1 | √ | √ | √ | √ | √ | |
2 | √ | √ | √ | √ | √ | |
3 | √ | √ | √ | |||
4 | √ | √ | √ | √ | √ | √ |
5 | √ | √ | √ | √ | √ | |
6 | √ | √ | √ | √ | ||
7 | √ | √ | √ | √ | √ | √ |
8 | √ | √ | √ | |||
9 | √ | √ | √ | √ | ||
10 | √ | √ | √ | |||
11 | √ | √ | √ | √ | √ | |
12 | √ | √ | √ | √ | √ | √ |
13 | √ | √ | √ | √ | √ | √ |
14 | √ | √ | √ | √ | √ | √ |
15 | √ | √ | √ | √ | √ | |
16 | √ | √ | √ | √ | √ | |
17 | √ | √ | ||||
18 | √ | √ | √ | √ | √ | |
19 | √ | √ | √ | √ | √ | |
20 | √ | √ | √ | √ | √ | |
21 | √ | √ | √ | √ | √ | |
FDR | 76.19% | 90.48% | 95.24% | 85.71% | 23.81% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.; Liu, J.; Liu, D. Multimode Process Monitoring Based on Modified Density Peak Clustering and Parallel Variational Autoencoder. Mathematics 2022, 10, 2526. https://doi.org/10.3390/math10142526
Yu F, Liu J, Liu D. Multimode Process Monitoring Based on Modified Density Peak Clustering and Parallel Variational Autoencoder. Mathematics. 2022; 10(14):2526. https://doi.org/10.3390/math10142526
Chicago/Turabian StyleYu, Feng, Jianchang Liu, and Dongming Liu. 2022. "Multimode Process Monitoring Based on Modified Density Peak Clustering and Parallel Variational Autoencoder" Mathematics 10, no. 14: 2526. https://doi.org/10.3390/math10142526
APA StyleYu, F., Liu, J., & Liu, D. (2022). Multimode Process Monitoring Based on Modified Density Peak Clustering and Parallel Variational Autoencoder. Mathematics, 10(14), 2526. https://doi.org/10.3390/math10142526