Next Article in Journal
A Hybrid Delay Aware Clustered Routing Approach Using Aquila Optimizer and Firefly Algorithm in Internet of Things
Next Article in Special Issue
Characterization of All Graphs with a Failed Skew Zero Forcing Number of 1
Previous Article in Journal
Estimating Value-at-Risk and Expected Shortfall: Do Polynomial Expansions Outperform Parametric Densities?
Previous Article in Special Issue
Some Properties of Stochastic Matrices and Non-Homogeneous Markov Chains Generated by Nonlinearities in the Resource Network Model
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Computing Sharp Bounds of Metric Based Fractional Dimensions for the Sierpinski Networks

1
Department of Mathematics, School of Science, University of Management and Technology, Lahore 54770, Pakistan
2
Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(22), 4332; https://doi.org/10.3390/math10224332
Submission received: 8 September 2022 / Revised: 13 November 2022 / Accepted: 16 November 2022 / Published: 18 November 2022
(This article belongs to the Special Issue Graph Theory and Applications)

Abstract

:
The concept of metric dimension is widely applied to solve various problems in the different fields of computer science and chemistry, such as computer networking, integer programming, robot navigation, and the formation of chemical structuring. In this article, the local fractional metric dimension (LFMD) of the cycle-based Sierpinski networks is computed with the help of its local resolving neighborhoods of all the adjacent pairs of vertices. In addition, the boundedness of LFMD is also examined as the order of the Sierpinski networks approaches infinity.

1. Introduction

In connected networks, the distance between vertices (nodes) plays an important role in the study of the different structural properties such as connectivity, robustness, completeness, and complexity. Being a distance-based parameter, metric dimension is used to find the minimum number of nodes as object locations of the auto-machines in a network [1,2].
For a vertex x V ( N ) and a set of vertices P = { p 1 , p 2 , p 3 , , p l } of a network N , the l-tuple metric form of P in terms of x is r ( x / P ) = ( d ( x , p 1 ) , d ( x , p 2 ) , d ( x , p 3 ) , , d ( x , p l ) ) . The set P N becomes a resolving set if it has unique metric form with respect to each x in N . Moreover, the metric dimension of N is defined as d i m ( N ) = min{ | P | : P is the resolving set of N }, where P of minimum cardinality is considered as a base set of N [3]. In 1975, Slater commenced the location number for the connected networks [4]. Subsequently, Melter and Harary worked on this concept in 1976, and they used the term metric dimension instead of location number [5]. Shahida and Sunitha found the metric dimension of the networks under different operations [6]. In 2000, Chartrand et al. developed the sharp bounds of unicylic networks by using metric dimension (MD) [7].
Currie and Ollermann used the concept of fractional metric dimension (FMD) as the optimal solution of non-integer programming problems (IPP) [8]. In 2012, Arumugam and Mathew gave the formal definition of FMD and also proved its different basic properties. They derived sufficient conditions for connected networks whose FMD is | V | 2 , where | V | is the order of the network under study [9]. In addition, they found the FMD of some basic networks such as Petersen, cycles, wheels, hypercubes, and friendship networks [10]. In addition, fractional metric dimensions of trees and uni-cyclic networks were discussed in [11]. Subsequently, many researchers worked on this concept and developed the FMDs for various networks under different operations of product such as comb, hierarchical, corona, and lexicographic [12,13,14]. The fractional metric dimension of generalized Jahangir networks, molecular networks, and metal-organic networks were discussed in [15,16,17]. The lower and upper bounds of FMD were discussed in [3]. The improved lower bound of FMD from unity can be found in [1]. The exact value of FMD of double connected networks, circular double ladder networks, and double path networks are computed in terms of their order [18]. For more results, we refer to [19,20].
Local fractional metric dimension (LFMD) was introduced in 2019 by Aisyah et al. They discussed the LFMD of corona products of networks [21]. The outcomes of the sharp bounds of LFMD on connected structures can be found in [1]. The sharp bounds of LFMD for cycle-related structures and prism-related structures are in [22]. In 2021, Javaid et al. discussed the boundedness of convex polytope networks using the concept of LFMD [23].
In this article, we computed the sharp lower and upper bounds of the local fractional metric dimensions for the cycle-based Sierpinski networks in terms of the order of the used cycles. Moreover, we checked the boundedness and unboundedness of the obtained results when the order of the used cycles approaches infinity. This article is organized as follows: Section 1 narrates the introduction, Section 2 describes preliminaries, Section 3 presents LRNs of the Sierpinski network of the cycle network, Section 4 deals with the LFMDs of the Sierpinski network of the cycle network, and Section 5 comprises the discussion and conclusion.

2. Preliminaries

A simple connected network N (without loops and multiple edges) can be expressed by a vertex set V ( N ) and an edge set E ( N ) , which is a subset of V ( N ) x V ( N ) , where | V ( N ) | and | E ( N ) | are the order and the size of network N . A walk (sequence of vertices and edges) without repetition of vertices is called a path. A cycle is a nontrivial path in which only one vertex is repeated. The length of the path is the number of edges on it. The distance between u and v of N is the length of the shortest path between them and it is denoted by d ( u , v ) . For more information regarding network theory, we refer to [24,25,26].
For an edge u v E ( N ) , the vertex z V ( N ) locally resolves u v if d ( u , z ) d ( v , z ) . The set consisting of all such vertices is known as the local resolving neighborhood set (LRNs) of u v as L R ( u v ) = { z V ( N ) : d ( u , z ) d ( v , z ) } . Now, we discuss some basic definitions that help to compute the main results as follows:
Definition 1.
For a vertex set V ( N ) of a connected network N , a real valued function f : V ( N ) [ 0 , 1 ] is said to be a local resolving function (LRF) if f ( L R ( u v ) ) 1 for every edge u v in network N , where f ( L R ( u v ) ) = x L R ( u v ) f ( x ) [21].
Definition 2.
An LRF, f becomes minimal LRF if each f : V ( N ) [ 0 , 1 ] such that f ( x ) f ( x ) and f ( x ) f ( x ) for at least one x V ( N ) , which is not the LRF of network N [21].
Definition 3.
The local fractional metric dimension ( d i m l f m ( N ) ) is defined as d i m l f m ( N ) = min { | f | : f is local minimal resolving function of N }, where | f | = u V ( N ) f ( u ) [21].
Lemma 1
([1]). Let N = ( V ( N ) , E ( N ) ) be a connected network and L R ( e ) be the local resolving neighborhood set. Then,
| V ( N ) | β d i m l f m ( N ) ,
where β = m a x { | L R ( e ) | : e E ( N ) } and 2 β | V ( N ) | .
Construction of C k -based Sierpinski Networks: Sierpinski networks are a family of fractal networks widely studied and applied in topology, computer sciences, and other fields. Many researchers worked on Sierpinski networks and they discussed their average eccentricity, variants of covering codes, and coloring [27,28,29]. Klavzar and Milutinovic proposed the construction method of the Sierpinski network of complete network K k . In the first step, they considered the complete network of order k and denoted it as S ( 1 , K k ) . In the second step, they took k-copies of S ( 1 , K k ) and added an edge between each pair of S ( 1 , K k ) for the formation of S ( 2 , K k ) . By the repetition of this process, they derive S ( n , K k ) , where n k [30]. Gravier et al. investigated the generalized Sierpinski network S ( n , N ) for any network N [31]. For more detail, see the survey [32].
Now we define a C k -based Sierpinski network, where C k is the cycle network of order k in which each vertex has degree 2. The vertex set and edge set of C k -based Sierpinski network S ( 2 , C k ) are V ( S ( 2 , C k ) ) = { x i , v i j ; 1 i k ; 1 j k 1 } and E ( S ( 2 , C k ) ) = { x i v i + 1 k 2 t 2 , x i v i + 1 k 1 , v i + 1 j v i + 1 j + 1 , v i k 2 t 2 v i + 1 k 1 ; 1 i k ; 1 j k 1 } respectively, where t = k 3 2 . The order and size of S ( 2 , C k ) are k 2 and k ( k + 1 ) , respectively. The C 3 -based Sierpinski network S ( 2 , C 3 ) is shown in Figure 1.
The vertex set and edge set of C k -based Sierpinski network S ( 3 , C k ) are V ( S ( 3 , C k ) ) = { x i l , v i j , l ; 1 i k ; 1 j k 1 ; 1 l k } and E ( S ( 3 , C k ) ) = { x i l v i + 1 k 2 t 2 , l , x i l v i + 1 k 1 , l , v i k 2 t 2 , l v i + 1 k 1 , l , v i + 1 j , l v i + 1 j + 1 , l , x i i + 1 x i + 1 i ; 1 i k ; 1 j k 1 ; 1 l k } respectively, where t = k 3 2 . The order and size of S ( 3 , C k ) are k 3 and k ( k 2 + k + 1 ) , respectively. The C 3 -based Sierpinski network S ( 3 , C 3 ) is shown in Figure 2.

3. LRNs of C k -Based Sierpinski Networks

In this section, the local resolving neighborhood sets of the C k -based Sierpinski networks are classified.
Lemma 2.
Let N S ( 2 , C k ) be a C k -based Sierpinski network with k 7 and k 1 ( m o d 2 ) . Then we have
1. 
k 2 + 2 k 5 2 | L R ( e ) | e E ( N ) ,
2. 
| L R ( e ) i = 1 k L R ( e i w ) | | L R ( e i w ) | , where | L R ( e i w ) | = k 2 + 2 k 5 2 , w = 1 , 2 and 1 i k .
Proof. 
  • For 1 i k , we have eight types of edges in a network N . Three types of LRNs of these edges as follows:
    L R ( e i 1 ) = L R ( v i + 1 k t 3 v i + 1 k t 2 ) = V ( N ) { x s + t + i + 1 , v i + 1 k 1 , v p + i + 1 j , v k t + i r ; k t p k 1 ; 1 s k t 2 ; 1 r k t 1 ; 1 j k 1 } ,
    L R ( a i ) = L R ( x i v i + 1 k 2 t 2 ) = V ( N ) { v i + 1 k t 1 , v k t + i p ; k t p k 1 } ,
    L R ( c i ) = L R ( v i + 1 m v i + 1 m + 1 ) = V ( N ) { v i + 1 k t + m 1 } , where 1 m k 5 2 .
    Similarly, we have obtained L R ( e i 2 ) = L R ( v i + 1 k t 1 v i + 1 k t ) , L R ( b i ) = L R ( x i v i + 1 k 1 ) , L R ( d i ) = L R ( v i + 1 k t 2 v i + 1 k t 1 ) = L R ( e i ) = L R ( v i + 1 k t m 1 v i + 1 k t + m ) = L R ( f i ) = L R ( v i + 1 k 2 t 2 v i + 2 k 1 ) and the cardinalities of all LRNs are in Table 1.
  • Table 1 shows that | L R ( e i w ) | | L R ( e ) | e E ( N ) and | L R ( e ) i = 1 k L R ( e i w ) | > | L R ( e i w ) | .
Table 1. Local resolving neighborhood set (LRNs) of S ( 2 , C k ) .
Table 1. Local resolving neighborhood set (LRNs) of S ( 2 , C k ) .
LRNsCardinalities
L R ( e i 1 ) , L R ( e i 2 ) k 2 + 2 k 5 2
L R ( a i ) , L R ( b i ) k 2 ( t + 1 )
L R ( c i ) , L R ( d i ) , L R ( e i ) , L R ( f i ) k 2 1
Lemma 3.
Let N S ( 3 , C 3 ) be a C 3 -based Sierpinski network. Then we have
1. 
14 L R ( e ) e E ( N ) ,
2. 
| L R ( e ) i = 1 3 L R ( e i y ) | | L R ( e i y ) | , where | L R ( e i y ) | = 14 , y = 1 , 2 and 1 i 3 .
Proof. 
  • For 1 i 3 , we have 13 types of edges in a network N . Five types of LRNs of these edges are as follows:
    L R ( e i 1 ) = L R ( x i i v i + 1 1 , i ) = V ( N ) { v i + 1 2 , i , x i + 2 i , v i j , i , x l i + 2 , v l j , i + 2 ; 1 l 3 ; 1 j 2 } ,
    L R ( u i 1 ) = L R ( x i + 1 i v i + 2 1 , i ) = V ( N ) { v i + 2 2 , i , x i i , v i + 1 j , i , v i + 2 1 , i + 2 ; 1 j 2 } ,
    L R ( u i 2 ) = L R ( x i + 1 i v i + 2 2 , i ) = V ( N ) { v i + 2 1 , i , x i + 2 i , v i j , i x i i + 2 , x i + 2 i + 2 , v i j , i + 2 , v i + 1 j , i + 2 , v i + 2 2 , i + 2 ; 1 j 2 } ,
    L R ( u i 7 ) = L R ( v i 1 , i v i + 1 2 , i ) = V ( N ) { x i + 1 i , x i i + 1 , x i + 1 i + 1 , v l j , i + 1 ; 1 l 3 ; 1 j 2 } ,
    L R ( u i 9 ) = L R ( v i + 1 1 , i v i + 1 2 , i ) = V ( N ) { x i i } .
    Similarly, we obtained L R ( e i 2 ) = L R ( x i i v i + 1 2 , i ) , L R ( u i 5 ) = L R ( x i + 2 i v i 2 , i ) , L R ( u i 3 ) = L R ( v i + 2 1 , i v i + 2 2 , i ) , L R ( u i 4 ) = L R ( x i + 2 i v i 1 , i ) , L R ( u i 6 ) = L R ( v i 1 , i v i 2 , i ) , L R ( u i 8 ) = L R ( v i + 1 1 , i v i + 2 2 , i ) , L R ( u i 10 ) = L R ( v i + 2 1 , i v i 2 , i ) and L R ( u i 11 ) = L R ( x i + 1 i x i i + 1 ) and the cardinalities of all LRNs are in Table 2.
  • Table 2 shows that | L R ( e i y ) | | L R ( u i z ) | and | L R ( u i z ) i = 1 3 L R ( e i y ) | > | L R ( e i y ) | .
Table 2. Local resolving neighborhood set (LRNs) L R ( e i y ) for 1 y 2 and L R ( u i z ) for 1 z 11 .
Table 2. Local resolving neighborhood set (LRNs) L R ( e i y ) for 1 y 2 and L R ( u i z ) for 1 z 11 .
LRNsCardinalities
L R ( e i 1 ) , L R ( e i 2 ) 14
L R ( u i 1 ) , L R ( u i 5 ) 22
L R ( u i 2 ) , L R ( u i 3 ) , L R ( u i 4 ) , L R ( u i 6 ) 16
L R ( u i 7 ) , L R ( u i 8 ) 18
L R ( u i 9 ) , L R ( u i 10 ) , L R ( u i 11 ) 26
Lemma 4.
Let N S ( 3 , C 5 ) be a C 5 -based Sierpinski network. Then we have
1. 
63 L R ( e ) e E ( N ) ,
2. 
| L R ( e ) i = 1 5 L R ( e i y ) | | L R ( e i y ) | , where | L R ( e i y ) | = 63 , y = 1 , 2 and 1 i 5 .
Proof. 
  • For 1 i 5 , we have 31 types of edges in a network N . Eleven types of LRNs of these edges are as follows:
    L R ( e i 1 ) = L R ( v i + 3 1 , i v i + 3 2 , i ) = V ( N ) { v i + 3 4 , i , x i + 1 i , v i + 2 j , i , x i i , v i + 1 1 , i , v i + 1 2 , i , v i + 1 3 , i , x l i + 1 , v l j , i + 1 , x l i + 2 , v l j , i + 2 , x i + 2 i + 3 , v i + 3 4 , i + 3 ; 1 l 5 ; 1 j 4 } ,
    L R ( u i 1 ) = L R ( x i i v i + 1 1 , i ) = V ( N ) { v i + 1 3 , i , v i + 4 4 , i , v i + 3 4 , i + 3 , x i + 2 i + 3 } ,
    L R ( u i 11 ) = L R ( x i + 2 i v i + 3 4 , i ) = V ( N ) { v i + 3 2 , i , v i 1 , i , x i + 1 i + 3 } ,
    L R ( u i 13 ) = L R ( x i + 1 i v i + 2 1 , i ) = V ( N ) { v i + 2 3 , i , v i 4 , i } ,
    L R ( u i 15 ) = L R ( v i + 2 3 , i v i + 2 4 , i ) = V ( N ) { v i + 2 1 , i , x i + 2 i , v i + 3 j , i , x i + 3 i , v i + 4 2 , i , v i + 4 3 , i , v i + 4 4 , i ; 1 j 4 } ,
    L R ( u i 17 ) = L R ( v i + 2 2 , i v i + 2 3 , i ) = V ( N ) { x i + 1 i , x l i + 1 , v l j , i + 1 , x l i + 2 , v l j , i + 2 , x i + 2 i + 3 , v i + 3 j , i + 3 , x i + 1 i + 3 , v i + 2 1 , i + 3 , v i + 2 2 , i + 3 ; 1 l 5 ; 1 j 4 } ,
    L R ( u i 19 ) = L R ( v i + 1 1 , i v i + 1 2 , i ) = V ( N ) { v i + 1 4 , i , x i + 4 i , x i + 3 i , v i j , i + 3 , v i + 4 1 , i , v i + 4 2 , i , v i + 4 3 , i , x l i + 4 , v l j , i + 4 , x i i + 3 , x i + 1 i + 3 , x i + 3 i + 3 , x i + 4 i + 3 , v i j , i , v i + 1 j , i + 3 , v i + 2 j , i + 3 , v i + 4 j , i + 3 , v i + 3 1 , i + 3 , v i + 3 2 , i + 3 , v i + 3 3 , i + 3 ; 1 l 5 ; 1 j 4 } ,
    L R ( u i 21 ) = L R ( v i + 2 1 , i v i + 2 2 , i ) = V ( N ) { v i + 2 4 , i , x i i , v i + 1 j , i , x i + 4 i , x l i + 4 , v l j , i + 4 , x i i + 3 , x i + 3 i + 3 , x i + 4 i + 3 , v i + 1 j , i + 3 , v i + 2 4 , i + 3 , v i j , i + 3 , v i 1 , i , v i 2 , i , v i 3 , i , v i + 4 1 , i + 3 , v i + 4 2 , i + 3 , v i + 4 3 , i + 3 ; 1 l 5 ; 1 j 4 } ,
    L R ( u i 23 ) = L R ( v i + 3 3 , i v i + 3 4 , i ) = V ( N ) { v i + 3 1 , i , x i + 3 i , v i + 4 j , i , x i + 4 i , x l i + 4 , v l j , i + 4 , x i + 3 i + 3 , x i + 4 i + 3 , v i j , i + 3 , v i + 1 j , i + 3 , v i + 4 j , i + 3 , v i 2 , i , v i 3 , i , v i 4 , i , v i + 2 3 , i + 3 , v i + 2 4 , i + 3 , x i i + 3 ; 1 l 5 ; 1 j 4 } ,
    L R ( u i 25 ) = L R ( v i + 2 1 , i v i + 3 4 , i ) = V ( N ) { x i + 4 i , x l i + 4 , v l j , i + 4 , v i + 2 4 , i + 3 , x i + 3 i + 3 , x i + 4 i + 3 , v i j , i + 3 , v i + 1 j , i + 3 , v i + 4 1 , i + 3 , v i + 4 2 , i + 3 , v i + 4 3 , i + 3 , x i i + 3 ; 1 l 5 ; 1 j 4 } ,
    L R ( u i 27 ) = L R ( v i + 1 2 , i v i + 1 3 , i ) = V ( N ) { x i i } .
    Similarly, we obtained L R ( e i 2 ) = L R ( v i + 4 3 , i v i + 4 4 , i ) , L R ( u i 2 ) = L R ( x i i v i + 1 4 , i ) , L R ( u i 3 ) = L R ( x i + 1 i v i + 2 4 , i ) , L R ( u i 4 ) = L R ( x i + 2 i v i + 3 1 , i ) , L R ( u i 5 ) = L R ( v i + 3 2 , i v i + 3 3 , i ) , L R ( u i 6 ) = L R ( v i + 4 2 , i v i + 4 3 , i ) , L R ( u i 7 ) = L R ( x i + 3 i v i + 4 4 , i ) , L R ( u i 8 ) = L R ( x i + 4 i v i 1 , i ) , L R ( u i 9 ) = L R ( v i 1 , i v i + 1 4 , i ) , L R ( u i 10 ) = L R ( v i + 1 1 , i v i + 2 4 , i ) , L R ( u i 12 ) = L R ( x i + 3 i v i + 4 1 , i ) , L R ( u i 14 ) = L R ( x i + 4 i v i 4 , i ) , L R ( u i 16 ) = L R ( v i 1 , i v i 2 , i ) , L R ( u i 18 ) = L R ( v i 2 , i v i 3 , i ) , L R ( u i 20 ) = L R ( v i + 1 3 , i v i + 1 4 , i ) , L R ( u i 22 ) = L R ( v i 3 , i v i 4 , i ) , L R ( u i 24 ) = L R ( v i + 4 1 , i v i + 4 2 , i ) , L R ( u i 26 ) = L R ( v i + 4 1 , i v i 4 , i ) , L R ( u i 28 ) = L R ( v i + 3 1 , i v i + 4 4 , i ) and L R ( u i 29 ) = L R ( x i + 1 i x i i + 1 ) and the cardinalities of the sets of all LRNs are in Table 3.
  • Table 3 shows that | L R ( e i y ) | | L R ( u i z ) | and | L R ( u i z ) i = 1 5 L R ( e i y ) | > | L R ( e i y ) | .
Table 3. Local resolving neighborhood set (LRNs) L R ( e i y ) for 1 y 2 and L R ( u i z ) for 1 z 29 .
Table 3. Local resolving neighborhood set (LRNs) L R ( e i y ) for 1 y 2 and L R ( u i z ) for 1 z 29 .
LRNsCardinalities
L R ( e i 1 ) , L R ( e i 2 ) 63
L R ( u i j ) ; 1 j 10 121
L R ( u i 11 ) , L R ( u i 12 ) 122
L R ( u i 13 ) , L R ( u i 14 ) 123
L R ( u i 15 ) , L R ( u i 16 ) 115
L R ( u i 17 ) , L R ( u i 18 ) 66
L R ( u i 19 ) , L R ( u i 20 ) 67
L R ( u i 21 ) , L R ( u i 22 ) 75
L R ( u i 23 ) , L R ( u i 24 ) 73
L R ( u i 25 ) , L R ( u i 26 ) 84
L R ( u i 27 ) , L R ( u i 28 ) , L R ( u i 29 ) 124
Lemma 5.
Let N S ( 3 , C k ) be a C k -based Sierpinski network with k 7 and k 1 ( m o d 2 ) . Then we have
1. 
k 2 + 2 k 5 2 L R ( e ) e E ( N ) ,
2. 
| L R ( e ) i = 1 k L R ( e i y ) | | L R ( e i y ) | , where | L R ( e i y ) | = k 2 + 2 k 5 2 , y = 1 , 2 and 1 i k .
Proof. 
  • For 1 i k and t = k 3 2 , the LRNs of 57 types of edges in a network N . Thirteen types of LRNs of these edges are as follows:
    L R ( e i 1 ) = L R ( v m + i + 2 k t 3 , i v m + i + 2 k t 2 , i ) = V ( N ) { v m + i + 2 k t , i , x k t + s + m + i 1 i , v k t + m + m + i 1 j , i , x k t + m + i 1 r , i , x l l , v l j , l ; 3 m k t 1 ; 2 l k ; 1 s k t 2 ; 1 r k t 1 ; 1 j k 1 ; 1 l k } , where 1 m k 5 2 ,
    L R ( u i 1 ) = L R ( v k t + i 1 k t 3 , i v k t + i 1 k t 2 , i ) = V ( N ) { v k t + i 1 k 1 , i , x m + i 1 k t + i 1 , v k t + i 1 p , k t + i 1 , v k m t + i 1 j , k t + i 1 , v i + 2 r , i , v l j , s + i , x l s + i , x s + i 1 i , v m + i 1 j , i ; k t p k 1 ; 1 s k t 2 ; 1 m k 5 2 ; 1 r k t 1 ; 1 j k 1 ; 1 l k } ,
    L R ( u i 3 ) = L R ( v i + 2 k t 2 , i v i + 2 k t 1 , i ) = V ( N ) { x i + 1 i , x l s + i , v l j , s + i , x s + i k t + i 1 , v m + i j , k t + i + 1 , v i + 2 s , k t + i 1 ; 1 j k 1 ; 1 l k ; 3 m k t 1 ; 1 s k t 2 } ,
    L R ( u i 5 ) = L R ( v i + 1 k t 3 , i v i + 1 k t 2 , i ) = V ( N ) { v i + 1 k 1 , i , v p + i + 1 j , i , v r + t + i + 2 j , k t + i 1 , v k t + i r , i , v k t + i 1 r , k t + i 1 , x r + t + i + 1 k t + i 1 , v l j , p + i , x l p + i , x s + t + i + 1 i ; k t p k 1 ; 1 s k t 2 ; 1 r k t 1 ; 1 j k 1 ; 1 l k ; 1 r k t } ,
    L R ( u i 7 ) = L R ( v k t + i 1 k t 1 , i v k t + i 1 k t , i ) = V ( N ) { v k t + i 1 1 , i , x k s + i i , v p + i j , i , v i r + t , i , x l p + i , x r + t + i + 1 k t + i 1 , v r + t + i + 2 j , k t + i 1 , v l j , p + i , v i + 2 s + t + 1 , k t + i 1 ; 1 s k t 2 ; 1 r k t 1 ; 1 l k ; 1 j k 1 ; k t p k 1 } ,
    L R ( u i 9 ) = L R ( v i + 2 k t 3 , i v i + 2 k t 2 , i ) = V ( N ) { v i + 2 k 1 , i , x m + t + i + 1 i , v m + t + i + 2 j , i , x k t + i i , v k t + i + 1 r , i , x l p + i , x r + t + i + 1 k t + i 1 , v l j , p + i , v k t + s + i j , k t + i 1 , v i + 2 p , k t + i 1 , v k t + i r , k t + i 1 ; 3 m k t 1 ; 1 l k ; k t p k 1 ; 1 s k t 2 ; 1 r k t 1 ; 1 j k 1 } ,
    L R ( u i 11 ) = L R ( v k t + i 2 k 2 t 2 , i v k t + i 1 k 1 , i ) = V ( N ) { x k + i 1 i , x k t + r + i 2 k t + i 1 , v k t + s + i j , k t + i 1 , v i + 2 p , k t + i 1 , v k t + i r , k t + i 1 , x l p + i , v l j , p + i ; 1 j k 1 ; 1 l k ; 1 s k t 2 ; 1 r k t 1 ; k t p k 1 } ,
    L R ( u i 17 ) = L R ( x i i v i + 1 k 2 t 2 , i ) = V ( N ) { v i + 1 k t 1 , i , v k t + i p , i , v k t + i 1 p , k t + i 1 , x m + i 1 k t + i 1 , v k t m + i j , k t + i 1 ; k t p k 1 ; 3 m k t 1 ; 1 m k 5 2 ; 1 j k 1 } ,
    L R ( u i 19 ) = L R ( x i + 1 i v i + 2 k 1 , i ) = V ( N ) { v i + 2 k t 2 , i , v k t + i k m t , i , v k t + i p , k t + i 1 , v i + 2 k t 1 , k t + i 1 ; 3 m k t 1 ; k t p k 1 } ,
    L R ( u i 23 ) = L R ( v k t + i 1 k t 2 , i v k t + i 1 k t 1 , i ) = V ( N ) { x k t + i 2 i , v k t + i 1 s , k t + i 1 , v i + 2 k t 2 , k t + i 1 ; 1 s k t 2 } ,
    L R ( u i 27 ) = L R ( v i + 1 k 2 t 2 , i v i + 2 k 1 , i ) = V ( N ) { x k t + i 1 i , v k t + i 1 s , k t + i 1 ; 1 s k t 2 } ,
    L R ( u i 29 ) = L R ( x i + 1 i v i + 2 k 2 t 2 , i ) = V ( N ) { v i + 2 k t 1 , i , v k t + i + 1 p , i ; k t p k 1 ; } ,
    L R ( u i 35 ) = L R ( v i + 1 m , i v i + 1 m + 1 , i ) = V ( N ) { v i + 1 k t + m 1 , i } , where 1 m k 5 2 .
    Similarly, we obtained L R ( e i 2 ) = L R ( v k t + m + i k t 1 , i v k t + m + i k t , i ) , L R ( u i 2 ) = L R ( v k t + i k t 1 , i v k t + i k t , i ) , L R ( u i 4 ) = L R ( v i k t 2 , i v i k t 1 , i ) , L R ( u i 6 ) = L R ( v i + 1 k t 1 , i v i + 1 k t , i ) , L R ( u i 8 ) = L R ( v k t + i k t 3 , i v k t + i k t 2 , i ) , L R ( u i 10 ) = L R ( v i k t 1 , i v i k t , i ) , L R ( u i 12 ) = L R ( v k t + i k 2 t 2 , i v k t + i + 1 k 1 , i ) , L R ( u i 13 ) = L R ( v i + 2 k t 1 , i v i + 2 k t , i ) , L R ( u i 14 ) = L R ( v m + i + 2 k t 1 , i v m + i + 2 k t , i ) , L R ( u i 15 ) = L R ( v k t + m + i k t 3 , i v k t + m + i k t 2 , i ) , L R ( u i 16 ) = L R ( v i k t 3 , i v i k t 2 , i ) , L R ( u i 18 ) = L R ( x i i v i + 1 k 1 , i ) ,
    L R ( u i 20 ) = L R ( x k t + i 2 i v k t + i 1 k 2 t 2 , i ) , L R ( u i 21 ) = L R ( x k t + i 1 i v k t + i k 1 , i ) , L R ( u i 22 ) = L R ( x k + i 1 i v i k 2 t 2 , i ) , L R ( u i 24 ) = L R ( x k t + i 2 i v k t + i 1 k 1 , i ) , L R ( u i 25 ) = L R ( v k t + i k t 2 , i v k t + i k t 1 , i ) , L R ( u i 26 ) = L R ( v i k 2 t 2 , i v i + 1 k 1 , i ) , L R ( u i 28 ) = L R ( x k t + i 1 i v k t + i k 2 t 2 , i ) , L R ( u i 30 ) = L R ( x m + i + 1 i v m + i + 2 k 2 t 2 , i ) , L R ( u i 31 ) = L R ( x m + i + 1 i v m + i + 2 k 1 , i ) , L R ( u i 32 ) = L R ( x k t + m + i 1 i v k t + m + i k 2 t 2 , i ) , L R ( u i 33 ) = L R ( x k t + m + i 1 i v k t + m + i k 1 , i ) , L R ( u i 34 ) = L R ( x k + i 1 i v i k 1 , i ) , L R ( u i 36 ) = L R ( v i + 1 k t 2 , i v i + 1 k t 1 , i ) , L R ( u i 37 ) = L R ( v i + 1 k t + m 1 , i v i + 1 k t + m , i ) , L R ( u i 38 ) = L R ( v i + 2 m , i v i + 2 m + 1 , i ) , L R ( u i 39 ) = L R ( v i + 2 k t + m 1 , i v i + 2 k t + m , i ) , L R ( u i 40 ) = L R ( v m + i + 2 q , i v m + i + 2 q + 1 , i ) , where 1 q k 5 2 , L R ( u i 41 ) = L R ( v m + i + 2 k t 2 , i v m + i + 2 k t 1 , i ) , L R ( u i 42 ) = L R ( v m + i + 2 k t + q 1 , i v i + 2 k t + q , i ) , where 1 q k 5 2 , L R ( u i 43 ) = L R ( v k t + i 1 m , i v k t + i 1 m + 1 , i ) ,
    L R ( u i 44 ) = L R ( v k t + i 1 k t + m 1 , i v k t + i 1 k t + m , i ) , L R ( u i 45 ) = L R ( v k t + i m , i v k t + i m + 1 , i ) , L R ( u i 46 ) = L R ( v k t + i k t + m 1 , i v k t + i k t + m , i ) , L R ( u i 47 ) = L R ( v k t + m + i q , i v k t + m + i q + 1 , i ) , where 1 q k 5 2 , L R ( u i 48 ) = L R ( v k t + m + i k t 2 , i v k t + m + i k t 1 , i ) , L R ( u i 49 ) = L R ( v k t + m + i k t + q 1 , i v k t + m + i k t + q , i ) , where 1 q k 5 2 , L R ( u i 50 ) = L R ( v i m , i v i m + 1 , i ) , L R ( u i 51 ) = L R ( v i k t + m 1 , i v i k t + m , i ) , L R ( u i 52 ) = L R ( v m + i + 1 k 2 t 2 , i v m + i + 2 k 1 , i ) , L R ( u i 53 ) = L R ( v k t + i 1 1 , i v k t + i k 1 , i ) , L R ( u i 54 ) = L R ( v k t + m + i k 2 t 2 , i v k t + m + i + 1 k 1 , i ) , L R ( u i 55 ) = L R ( x i + 1 i x i i + 1 ) and the cardinalities of the sets of all LRNs are in Table 4.
  • Table 4 shows that | L R ( e i y ) | | L R ( u i z ) | and | L R ( u i z ) i = 1 k L R ( e i y ) | > | L R ( e i y ) | .
Table 4. Local resolving neighborhood set (LRNs) L R ( e i y ) for 1 y 2 and L R ( u i z ) for 1 z 55 .
Table 4. Local resolving neighborhood set (LRNs) L R ( e i y ) for 1 y 2 and L R ( u i z ) for 1 z 55 .
LRNsCardinalities
L R ( e i 1 ) , L R ( e i 2 ) k 2 + 2 k 5 2
L R ( u i 1 ) , L R ( u i 2 ) k 3 ( t + 2 ) k 2 + 2 ( k + t ) + 1
L R ( u i 3 ) , L R ( u i 4 ) k 3 ( t + 1 ) k 2 + k ( 1 + t ) + 1
L R ( u i 5 ) , L R ( u i 6 ) k 3 ( t + 1 ) k 2 k 3
L R ( u i 7 ) , L R ( u i 8 ) k 3 ( t + 1 ) k 2 2
L R ( u i 9 ) , L R ( u i 10 ) k 3 ( t + 1 ) k 2 + 2
L R ( u i 11 ) , L R ( u i 12 ) , L R ( u i 13 ) , L R ( u i 14 ) , L R ( u i 15 ) , L R ( u i 16 ) k 3 t k 2 ( t + 2 ) k 1
L R ( u i 17 ) , L R ( u i 18 ) k 3 t k + 1
L R ( u i 19 ) , L R ( u i 20 ) , L R ( u i 21 ) , L R ( u i 22 ) k 3 k + 1
L R ( u i 23 ) , L R ( u i 24 ) , L R ( u i 25 ) , L R ( u i 26 ) k 3 ( t + 3 )
L R ( u i 27 ) , L R ( u i 28 ) k 3 ( t + 2 )
L R ( u i 29 ) , L R ( u i 30 ) , L R ( u i 31 ) , L R ( u i 32 ) , L R ( u i 33 ) , L R ( u i 34 ) k 3 ( t + 1 )
L R ( u i j ) ; 35 j 55 k 3 1

4. LFMD of C k -Based Sierpinski Networks

The LFMD of the C k -based Sierpinski networks are computed as follows.
Theorem 1.
Let N S ( 2 , C k ) be a C k —based Sierpinski network with k 7 , and k = 1 ( m o d 2 ) . Then
k 2 k 2 1 d i m l f m ( N ) 2 k 2 k 2 + 2 k 5 .
Proof. 
From Lemma 2, we have | L R ( e i w ) | = k 2 + 2 k 5 2 , where w = 1, 2 and | L R ( e i w ) | | L R ( e ) | e E ( N ) . In addition, | L R ( e ) i = 1 k L R ( e i w ) | | L R ( e i w ) | = k 2 + 2 k 5 2 . Define a local resolving function η : V ( N ) [ 0 , 1 ] as
η ( x ) = 2 k 2 + 2 k 5 if x w = 1 , 2 L R ( e i w ) 0 otherwise .
Since for each e E ( N ) , η ( L R ( e ) ) = x L R ( e ) η ( x ) = x L R ( e ) i = 1 k L R ( e i w ) 2 k 2 + 2 k 5 = | L R ( e ) i = 1 k L R ( e i w ) | 2 k 2 + 2 k 5 | L R ( e i w ) | 2 k 2 + 2 k 5 1 .
We note that i = 1 k L R ( e i w ) = and the pairwise intersection of L R ( e i w ) ’s is non-empty. Therefore ∃ a LRF, ϑ : V ( N ) [ 0 , 1 ] such that ϑ > η then d i m l f m ( N ) i = 1 X 2 k 2 + 2 k 5 , where X = | i = 1 w L R ( e i w ) | = | V ( N ) | . Therefore, d i m l f m ( N ) 2 k 2 k 2 + 2 k 5 .
The cardinalities of L R ( c i ) , L R ( d i ) , L R ( e i ) and L R ( f i ) are greater than other remaining LRNs. Using Lemma 1, d i m l f m ( N ) k 2 k 2 1 . Using Lemma 1, d i m l f m ( N ) k 2 k 2 1 . Hence,
k 2 k 2 1 d i m l f m ( N ) 2 k 2 k 2 + 2 k 5 .
Theorem 2.
Let N S ( 3 , C k ) be a C k -based Sierpinski network with k 3 , and k = 1 ( m o d 2 ) . Then
1. 
27 26 d i m l f m ( N ) 27 14 , if k = 3 .
2. 
125 124 d i m l f m ( N ) 125 63 , if k = 5 .
3. 
k 3 k 3 1 d i m l f m ( N ) 2 k 3 k 2 + 2 k 5 , if k 7 .
Proof. 
  • From Lemma 3, we have | L R ( e i y ) | = 14 , where y = 1 , 2 and | L R ( e i y ) | | L R ( e ) | e E ( N ) . In addition, | L R ( e ) i = 1 k L R ( e i y ) | | L R ( e i y ) | = 1. Define a local resolving function η : V ( N ) [ 0 , 1 ] as
    η ( x ) = 1 14 if x i = 1 3 L R ( e i y ) 0 otherwise .
    Since for each e E ( N ) , η ( L R ( e ) ) = x L R ( e ) η ( x ) = x L R ( e ) i = 1 3 L R ( e i y ) 1 14 = | L R ( e ) i = 1 3 L R ( e i y ) | 1 14 | L R ( e i y ) | 1 14 1 .
    We note that i = 1 3 L R ( e i y ) = and the pairwise intersection of L R ( e i y ) ’s is non-empty. Therefore ∃ a LRF, ϑ : V ( N ) [ 0 , 1 ] such that ϑ > η then d i m l f m ( N ) i = 1 X 1 14 , where X = | i = 1 3 L R ( e i y ) | = | V ( N ) | . Therefore, d i m l f m ( N ) 27 14 .
    The cardinalities of L R ( u i 9 ) , L R ( u i 10 ) and L R ( u i 11 ) are greater than other remaining LRNs. Using Lemma 1, d i m l f m ( N ) 27 26 . Hence,
    27 26 d i m l f m ( N ) 27 14 .
  • From Lemma 4, we have | L R ( e i y ) | = 63 , where y = 1 , 2 and | L R ( e i y ) | | L R ( e ) | e E ( N ) . In addition, | L R ( e ) i = 1 5 L R ( e i y ) | | L R ( e i y ) | = 63. Define a local resolving function η : V ( N ) [ 0 , 1 ] as
    η ( x ) = 1 63 if x i = 1 5 L R ( e i y ) 0 otherwise .
    Since for each e E ( N ) , η ( L R ( e ) ) = x L R ( e ) η ( x ) = x L R ( e ) i = 1 5 L R ( e i y ) 1 63 = | L R ( e ) i = 1 5 L R ( e i y ) | 1 63 | L R ( e i y ) | 1 63 1 .
    We note that i = 1 5 L R ( e i y ) = and the pairwise intersection of L R ( e i y ) ’s is non-empty. Therefore ∃ a LRF, ϑ : V ( N ) [ 0 , 1 ] such that ϑ > η then d i m l f m ( N ) i = 1 X 1 63 , where X = | i = 1 5 L R ( e i y ) | = | V ( N ) | . Therefore, d i m l f m ( N ) 125 63 .
    The cardinalities of L R ( u i 27 ) , L R ( u i 28 ) and L R ( u i 29 ) are greater than other remaining LRNs. Using Lemma 1, d i m l f m ( N ) 125 124 . Hence,
    125 124 d i m l f m ( N ) 125 63 .
  • From Lemma 5, we have | L R ( e i y ) | = k 2 + 2 k 5 2 , where y = 1 , 2 and | L R ( e i y ) | | L R ( e ) | e E ( N ) . In addition, | L R ( e ) i = 1 k L R ( e i y ) | | L R ( e i y ) | = k 2 + 2 k 5 2 . Define a local resolving function η : V ( N ) [ 0 , 1 ] as
    η ( x ) = 1 k 2 + 2 k 5 2 if x i = 1 k L R ( e i y ) 0 otherwise .
    Since for each e E ( N ) , η ( L R ( e ) ) = x L R ( e ) η ( x ) = x L R ( e ) i = 1 k L R ( e i y ) 2 k 2 + 2 k 5 = | L R ( e ) i = 1 k L R ( e i y ) | 2 k 2 + 2 k 5 | L R ( e i y ) | 2 k 2 + 2 k 5 1 .
    We note that i = 1 k L R ( e i y ) = and the pairwise intersection of L R ( e i y ) ’s is non-empty. Therefore ∃ a LRF, ϑ : V ( N ) [ 0 , 1 ] such that ϑ > η then d i m l f m ( N ) i = 1 X 2 k 2 + 2 k 5 , where X = | i = 1 k L R ( e i y ) | = | V ( N ) | . Therefore, d i m l f m ( N ) 2 k 3 k 2 + 2 k 5 .
    The cardinality of L R ( u i h ) , where 35 h 55 is greater than other remaining LRNs. Using Lemma 1, d i m l f m ( N ) k 3 k 3 1 . Hence,
    k 3 k 3 1 d i m l f m ( N ) 2 k 3 k 2 + 2 k 5 .

5. Conclusions

This paper covered the newly developed version of metric dimension named local fractional metric dimension (LFMD). We computed the bounds for k 3 of cycle based Sierpinski networks S ( n , C k ) with the help of local resolving neighborhood sets. The obtained results are presented in Table 5. We note that, as the order of the networks increased, the LFMD also increased. Thus, the limiting values of the LFMD for the Sierpinski networks S ( 2 , C k ) , k 3 and upper bound is unbounded for S ( 3 , C k ) , k 7 . Consequently, we found that LFMD of the Sierpinski networks remains bounded as k approaches infinity. It is important to mention that if we consider the Sierpinski network as a communication network consisting of mobile users, then the bounded computed value of LFMD shows that the network does not dump even that the number of users approaches to infinity.

Author Contributions

Conceptualization, A.F. and M.J.; methodology, A.A., A.F. and M.J.; software, A.F.; validation, M.J.; formal analysis, M.J. and A.A.; investigation, A.F. and M.J.; resources, M.J., A.F.; writing-original draft preparation, A.F.; writing-review and editing, M.J. and A.A.; visualization, A.F. and M.J.; supervision, M.J.; project administration, M.J. All authors have read and agreed to the published version of the manuscript.

Funding

The work of Muhammad Javaid was supported by the Higher Education Commission of Pakistan through the National Research Program for Universities under Grant 20-16188/NRPU/R & D/HEC/2021 2021.

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Acknowledgments

We are indebted to the anonymous reviewers and editor for their detailed comments that improved the original version of this manuscript.

Conflicts of Interest

The authors declare that there are no conflict of interest regarding the publication of this paper.

References

  1. Javaid, M.; Zafar, H.; Zhu, Q.; Alanazi, A.M. Improved lower bound of LFMD with applications of prism-related networks. Math. Prob. Eng. 2021, 2021, 9950310. [Google Scholar] [CrossRef]
  2. Khuller, S.; Raghavachari, B.; Rosenfeld, A. Landmarks in graphs. Discret. App. Math. 1996, 70, 217–229. [Google Scholar] [CrossRef] [Green Version]
  3. Aslam, M.K.; Javaid, M.; Zhu, Q.; Raheem, A. On the fractional metric dimension of convex polytopes. Math. Prob. Eng. 2021, 2021, 3925925. [Google Scholar] [CrossRef]
  4. Slater, P.J. Leaves of trees. Congr. Numer. 1975, 14, 549–559. [Google Scholar]
  5. Harary, F.; Melter, R.A. On the metric dimension of a graph. Ars Comb. 1976, 2, 191–195. [Google Scholar]
  6. Shahida, A.T.; Sunitha, M.S. On the metric dimension of join of a graph with empty graph (Op). Electron. Notes Discret. Math. 2017, 63, 435–445. [Google Scholar] [CrossRef]
  7. Chartrand, G.; Eroh, L.; Johnson, M.; Oellermann, O.R. Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. 2000, 105, 99–113. [Google Scholar] [CrossRef] [Green Version]
  8. Currie, J.; Oellermann, O.R. The metric dimension and metric independence of a graph. J. Comb. Math. Comb. Comput. 2001, 39, 157–167. [Google Scholar]
  9. Arumugam, S.; Mathew, V. The fractional metric dimension of graphs. Discret. Math. 2012, 312, 1584–1590. [Google Scholar] [CrossRef] [Green Version]
  10. Arumugam, S.; Mathew, V.; Shen, J. On fractional metric dimension of graphs. Discret. Math. Algorithms Appl. 2013, 5, 1350037. [Google Scholar] [CrossRef]
  11. Krismanto, D.A.; Saputro, S.W. Fractional metric dimension of tree and unicyclic graph. Procedia Comput. Sci. 2015, 74, 47–52. [Google Scholar] [CrossRef] [Green Version]
  12. Feng, M.; Lv, B.; Wang, K. On the fractional metric dimension of graphs. Discret. Appl. Math. 2014, 170, 55–63. [Google Scholar] [CrossRef]
  13. Feng, M.; Wang, K. On the metric dimension and fractional metric dimension for hierarchical product of graphs. Appl. Anal. Discret. Math. 2013, 7, 302–313. [Google Scholar] [CrossRef]
  14. Feng, M.; Wang, K. On the fractional metric dimension of corona product graphs and lexicographic product graphs. arXiv 2012, arXiv:1206.1906. [Google Scholar]
  15. Liu, J.B.; Kashif, A.; Rasheed, T.; Javaid, M. Fractional metric dimension of generalized Jahangir graph. Mathematics 2019, 4, 100. [Google Scholar] [CrossRef] [Green Version]
  16. Javaid, M.; Aslam, M.K.; Alanazi, A.M.; Aljohani, M.M. Characterization of (molecular) graphs with fractional metric dimension as unity. J. Chem. 2021, 2021, 9910572. [Google Scholar] [CrossRef]
  17. Raza, M.; Javaid, M.; Saleem, N. Fractional metric dimension of metal organic frameworks. Main Group Met. Chem. 2021, 44, 99–102. [Google Scholar] [CrossRef]
  18. Zafar, H.; Javaid, M.; Bonyah, E. Studies of connected networks via fractional metric dimension. J. Math. 2022, 2022, 1273358. [Google Scholar] [CrossRef]
  19. Saputro, S.W.; Fenovcikova, A.S.; Baca, M.; Lascsakova, M. On fractional metric dimension of comb product graphs. Stat. Optim. Inf. Comput. 2018, 6, 150–158. [Google Scholar] [CrossRef] [Green Version]
  20. Javaid, M.; Raza, M.; Kumam, P.; Liu, J.B. Sharp bounds of local fractional metric dimensions of connected networks. IEEE Access 2020, 8, 172329–172342. [Google Scholar] [CrossRef]
  21. Aisyah, S.; Utoyo, M.I.; Susilowati, L. On the local fractional metric dimension of corona product graphs. IOP Conf. Ser. Earth Environ. Sci. 2019, 243, 012043. [Google Scholar] [CrossRef]
  22. Javaid, M.; Safdar, S.; Farooq, M.U.; Aslam, M.K. Computing sharp bounds for local fractional metric dimensions of cycle related graphs. Comp. J. Combin. Math. 2020, 1, 31–75. [Google Scholar]
  23. Javaid, M.; Zafar, H.; Aljaedi, A.; Mohammad, A. Boundedness of convex polytopes networks via local fractional metric dimension. J. Math. 2021, 2021, 2058662. [Google Scholar] [CrossRef]
  24. West, D.B. Introduction to Graph Theory, 2nd ed.; Prentice-Hall: Hoboken, NJ, USA, 2011. [Google Scholar]
  25. Chartrand, G.; Lesiniak, L. Graph and Diagraphs, 4th ed.; Chapman and Hall, CRC: Boca Raton, FL, USA, 2005. [Google Scholar]
  26. Gross, J.L.; Yellen, J. Graph Theory and Its Applications, 2nd ed.; Chapman and Hall, CRC: Boca Raton, FL, USA, 2005. [Google Scholar]
  27. Geetha, J.; Somasundaram, K. Total coloring of generalized sierpinski graphs. Aust. J. Combin. 2015, 63, 58–69. [Google Scholar]
  28. Hinz, A.M.; Parisse, D. The average eccentricity of sierpinski graphs. Graphs Comb. 2012, 28, 671–686. [Google Scholar] [CrossRef]
  29. Gravier, S.; Kovse, M.; Mollard, M.; Moncel, J.; Parreau, A. New results on variants of covering codes in sierpinski graphs. Des. Codes Cryptogr. 2013, 69, 181–188. [Google Scholar] [CrossRef]
  30. Klavzar, S.; Milutinovic, U. Graph S(n,k) and a variant of the tower of hanoi problem. Czechoslov. Math. J. 1997, 47, 95–104. [Google Scholar] [CrossRef] [Green Version]
  31. Gravier, S.; Kovse, M.; Parreau, A. Generalized sierpinski graphs. Euro Comb’11. Budapest 2011.
  32. Hinz, A.M.; Klavzar, K.; Zemljic, S.S. A survey and classification of sierpinski-type graphs. Discret. Appl. Math. 2017, 217, 565–600. [Google Scholar] [CrossRef]
Figure 1. A C 3 -based Sierpinski network with n = 2 , S ( 2 , C 3 ) .
Figure 1. A C 3 -based Sierpinski network with n = 2 , S ( 2 , C 3 ) .
Mathematics 10 04332 g001
Figure 2. A C 3 -based Sierpinski Network with n = 3 , S ( 3 , C 3 ) .
Figure 2. A C 3 -based Sierpinski Network with n = 3 , S ( 3 , C 3 ) .
Mathematics 10 04332 g002
Table 5. Boundness of LFMD of Sierpinski network S ( 2 , C k ) .
Table 5. Boundness of LFMD of Sierpinski network S ( 2 , C k ) .
NetworksBounds of LFMDLimiting Values of LFMD as k Remarks
S ( 2 , C k ) , k 3 k 2 k 2 1 d i m l f m ( S ( 2 , C k ) ) 2 k 2 k 2 + 2 k 5 1 d i m l f m ( S ( 2 , C k ) ) 2 bounded
S ( 3 , C 3 ) 27 26 d i m l f m ( S ( 3 , C 3 ) ) 27 14 -bounded
S ( 3 , C 5 ) 125 124 d i m l f m ( S ( 3 , C 5 ) ) 125 63 -bounded
S ( 3 , C k ) , k 7 k 3 k 3 1 d i m l f m ( S ( 3 , C k ) ) 2 k 3 k 2 + 2 k 5 1 d i m l f m ( S ( 3 , C k ) ) unbounded
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Fatima, A.; Alamer, A.; Javaid, M. Computing Sharp Bounds of Metric Based Fractional Dimensions for the Sierpinski Networks. Mathematics 2022, 10, 4332. https://doi.org/10.3390/math10224332

AMA Style

Fatima A, Alamer A, Javaid M. Computing Sharp Bounds of Metric Based Fractional Dimensions for the Sierpinski Networks. Mathematics. 2022; 10(22):4332. https://doi.org/10.3390/math10224332

Chicago/Turabian Style

Fatima, Arooba, Ahmed Alamer, and Muhammad Javaid. 2022. "Computing Sharp Bounds of Metric Based Fractional Dimensions for the Sierpinski Networks" Mathematics 10, no. 22: 4332. https://doi.org/10.3390/math10224332

APA Style

Fatima, A., Alamer, A., & Javaid, M. (2022). Computing Sharp Bounds of Metric Based Fractional Dimensions for the Sierpinski Networks. Mathematics, 10(22), 4332. https://doi.org/10.3390/math10224332

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop