Some Integral Inequalities in 𝒱-Fractional Calculus and Their Applications
Abstract
:1. Introduction and Preliminaries
- (i)
- when , then
- (ii)
- From (1), we can obtain directly by determining some parameters to be 1, some particular cases regarding the following truncated Mittag–Leffler functions:
- (a)
- For we get the five parameters truncated Mittag–Leffler function
- (b)
- With we get the four parameters truncated Mittag–Leffler function
- (c)
- In the case we get the three parameters truncated Mittag–Leffler function
- (d)
- For we get the two parameters truncated Mittag–Leffler function
- (e)
- With we get the one parameter truncated Mittag–Leffler function
- (f)
- Particularly, for we get the truncated exponential function
2. Fractional Steffensen–Hayashi Inequality and Remainder Identity
- (i)
- f is non-negative and non-increasing, then it holds
- (ii)
3. Applications to Various Inequalities Involving -Fractional Operators
3.1. Steffensen Inequality
- (i)
- If is increasing function and f is decreasing on , then
- (ii)
3.2. Chebyshev Inequality
3.3. Ostrowski Inequality
3.4. Grüss Inequality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differentional Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Srivastava, H.M. Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J. 2020, 60, 73–116. [Google Scholar]
- Oliveira, E.C.D.; Machado, J.A.T. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.V.D.C.; Oliveira, E.C.D. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 2018, 16, 83–96. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: New York, NY, USA, 2020. [Google Scholar]
- Sousa, J.V.D.C.; Oliveira, E.C.D. Mittag–Leffler functions and the truncated V-fractional derivative. Mediterr. J. Math. 2017, 14, 244. [Google Scholar] [CrossRef]
- Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox–Wright and related higher transcendental functions. J. Adv. Engrgy Comput. 2021, 5, 135–166. [Google Scholar]
- Srivastava, H.M. Some families of Mittag–Leffler type functions and associated operators of fractional calculus. TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Sousa, J.V.D.C.; Oliveira, E.C.D. A Truncated V-Fractional Derivative in Rn. 2017. Available online: https://www.researchgate.net/publication/317716635 (accessed on 20 April 2021).
- Pečarić, J.; Perić, I.; Smoljak, K. Generalized fractional Steffensen type inequalities. Eurasian Math. J. 2012, 3, 81–98. [Google Scholar]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.R.; Zhu, C.; Zhou, Y. New generalized Hermite–Hadamard type inequalities and applications to special means. J. Inequalities Appl. 2013, 2013, 325. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, J.R. On some new Hermite–Hadamard inequalities involving Riemann–Liouville fractional integrals. J. Inequalities Appl. 2013, 2013, 220. [Google Scholar] [CrossRef] [Green Version]
- Gauchman, H. Integral Inequalities in q-Calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Matthews, T. Ostrowski inequalities on time scales. J. Inequalities Pure Appl. Math. 2008, 9, 6. [Google Scholar]
- Bohner, M.; Matthews, T. The Grüss inequality on time scales. Commun. Math. Anal. 2007, 3, 1–8. [Google Scholar]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, FL, USA, 2001. [Google Scholar]
- Rudin, W. Real and Complex Analysis; McGraw-Hill: New York, NY, USA, 1966. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Mohammed, P.O.; Almutairi, O.; Kashuri, A.; Hamed, Y.S. Some Integral Inequalities in 𝒱-Fractional Calculus and Their Applications. Mathematics 2022, 10, 344. https://doi.org/10.3390/math10030344
Srivastava HM, Mohammed PO, Almutairi O, Kashuri A, Hamed YS. Some Integral Inequalities in 𝒱-Fractional Calculus and Their Applications. Mathematics. 2022; 10(3):344. https://doi.org/10.3390/math10030344
Chicago/Turabian StyleSrivastava, Hari Mohan, Pshtiwan Othman Mohammed, Ohud Almutairi, Artion Kashuri, and Y. S. Hamed. 2022. "Some Integral Inequalities in 𝒱-Fractional Calculus and Their Applications" Mathematics 10, no. 3: 344. https://doi.org/10.3390/math10030344
APA StyleSrivastava, H. M., Mohammed, P. O., Almutairi, O., Kashuri, A., & Hamed, Y. S. (2022). Some Integral Inequalities in 𝒱-Fractional Calculus and Their Applications. Mathematics, 10(3), 344. https://doi.org/10.3390/math10030344