Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors
Abstract
1. Introduction
2. Mathematical Model
Equilibrium Points Set and Stability
3. Numerical Diagram of the Dynamical Behaviors
3.1. Hidden Chaotic Attractor
3.2. Analysis of Dynamic Characteristics
3.3. Chaos Degradation
3.4. Coexisting-Attractors
3.5. Offset Boosting Scheme
3.6. Complexity Analysis
4. DSP Implementation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, H.; Wang, C.; Chen, C.; Sun, Y.; Zhou, C.; Xu, C.; Hong, Q. Neural Bursting and Synchronization Emulated by Neural Networks and Circuits. IEEE Trans. Circuits Syst. I 2021, 68, 3397–3410. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Yu, F.; Xu, C.; Hong, Q.; Yao, W.; Sun, Y. An extremely simple multiwing chaotic system: Dynamics analysis, encryption application, and hardware implementation. IEEE Trans. Ind. Electron. 2020, 68, 12708–12719. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Cui, L.; Sun, Y.; Xu, C.; Yu, F. Brain-Like Initial-Boosted Hyperchaos and Application in Biomedical Image Encryption. IEEE Trans. Ind. Inform. 2022, 18, 8839–8850. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Xu, C.; Zhang, X.; Iu, H.H.C. A Memristive Synapse Control Method to Generate Diversified Multi-Structure Chaotic Attractors. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2022. [Google Scholar] [CrossRef]
- Xu, C.; Wang, C.; Jiang, J.; Sun, J.; Lin, H. Memristive circuit implementation of context-dependent emotional learning network and its application in multi-task. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2021, 41, 3052–3065. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, M.; Wang, C.; Wang, S.; Xu, C. Image segmentation encryption algorithm with chaotic sequence generation participated by cipher and multi-feedback loops. Multimed. Tools Appl. 2021, 80, 13821–13840. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, C.; Xu, C. A novel hyper-chaotic image encryption scheme based on quantum genetic algorithm and compressive sensing. Multimedia Tools Appl. 2020, 79, 29243–29263. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Sun, Y.; Wang, T. Generating n-scroll chaotic attractors from a memristor-based magnetized hopfield neural network. IEEE Trans. Circuits Syst. II 2022. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Li, W.; Li, H.; Feng, W.; Qian, K. Image encryption algorithm with circle index table scrambling and partition diffusion. Nonlinear Dyn. 2021, 103, 2043–2061. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Y.; Li, H.; Feng, W.; Du, J. Image encryption scheme with bit-level scrambling and multiplication diffusion. Multimed. Tools Appl. 2021, 80, 18479–18501. [Google Scholar] [CrossRef]
- Gao, X.; Mou, J.; Xiong, L.; Sha, Y.; Yan, H.; Cao, Y. A fast and efficient multiple images encryption based on single-channel encryption and chaotic system. Nonlinear Dyn. 2022, 108, 613–636. [Google Scholar] [CrossRef]
- Liu, X.; Mou, J.; Yan, H.; Bi, X. Memcapacitor-Coupled Chebyshev Hyperchaotic Map. Int. J. Bifurc. Chaos 2022, 32, 2250180. [Google Scholar] [CrossRef]
- Chu, Y.-M.; Bekiros, S.; Zambrano-Serrano, E.; Orozco-López, O.; Lahmiri, S.; Jahanshahi, H.; Aly, A.A. Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model. Chaos Solitons Fractals 2021, 145, 110776. [Google Scholar] [CrossRef]
- Peng, Y.; He, S.; Sun, K. Chaos in the discrete memristor-based system with fractional-order difference. Results Phys. 2021, 24, 104106. [Google Scholar] [CrossRef]
- Li, X.; Mou, J.; Cao, Y.; Banerjee, S. An Optical Image Encryption Algorithm Based on a Fractional-Order Laser Hyperchaotic System. Int. J. Bifurc. Chaos 2022, 32, 2250035. [Google Scholar] [CrossRef]
- Gao, X.; Mou, J.; Banerjee, S.; Cao, Y.; Xiong, L.; Chen, X. An effective multiple-image encryption algorithm based on 3D cube and hyperchaotic map. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 1535–1551. [Google Scholar] [CrossRef]
- Han, X.; Mou, J.; Jahanshahi, H.; Cao, Y.; Bu, F. A new set of hyperchaotic maps based on modulation and coupling. Eur. Phys. J. Plus 2022, 137, 523. [Google Scholar] [CrossRef]
- Li, X.; Mou, J.; Banerjee, S.; Wang, Z.; Cao, Y. Design and DSP implementation of a fractional-order detuned laser hyperchaotic circuit with applications in image encryption. Chaos Solitons Fractals 2022, 159, 112133. [Google Scholar] [CrossRef]
- Sha, Y.; Bo, S.; Yang, C.; Mou, J.; Jahanshahi, H. A Chaotic Image Encryption Scheme Based on Genetic Central Dogma and KMP Method. Int. J. Bifurc. Chaos 2022, 32, 2250186. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, L.; Wu, R. The Design and Realization of a Hyper-Chaotic Circuit Based on a Flux-Controlled Memristor with Linear Memductance. J. Circuits, Syst. Comput. 2018, 27, 1850038. [Google Scholar] [CrossRef]
- Ren, L.; Mou, J.; Banerjee, S.; Zhang, Y. A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application. Chaos Solitons Fractals 2023, 167, 113024. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Xie, W.; Du, J. A S-type bistable locally active memristor model and its analog implementation in an oscillator circuit. Nonlinear Dyn. 2021, 106, 1041–1058. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, G.; Kuznetsov, N.; Bao, H. Hidden attractors and multistability in a modified Chua’s circuit. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105494. [Google Scholar] [CrossRef]
- Cui, L.; Luo, W.-H.; Ou, Q.-L. Analysis and implementation of new fractional-order multi-scroll hidden attractors*. Chin. Phys. B 2021, 30, 020501. [Google Scholar] [CrossRef]
- Gong, L.-H.; Luo, H.-X.; Wu, R.-Q.; Zhou, N.-R. New 4D chaotic system with hidden attractors and self-excited attractors and its application in image encryption based on RNG. Phys. A Stat. Mech. Appl. 2022, 591, 126793. [Google Scholar] [CrossRef]
- Wen, J.; Feng, Y.; Tao, X.; Cao, Y. Dynamical Analysis of a New Chaotic System: Hidden Attractor, Coexisting-Attractors, Offset Boosting, and DSP Realization. IEEE Access 2021, 9, 167920–167927. [Google Scholar] [CrossRef]
- Itoh, M.; Chua, L.O. Memristor oscillators. Int. J. Bifurc. Chaos 2008, 18, 3183–3206. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Y.; Jia, L.; Yu, J. Chaotic Oscillator Based on Voltage-Controlled Memcapacitor. In Proceedings of the 2010 International Conference on Communications, Circuits and Systems (ICCCAS), Chengdu, China, 28–30 July 2010; pp. 824–827. [Google Scholar]
- Yuan, F.; Wang, G.; Wang, X. Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. Chaos Interdiscip. J. Nonlinear Sci. 2017, 27, 033103. [Google Scholar] [CrossRef]
- Yuan, F.; Li, Y. A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 101101. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, L.; Xiang, J.; Bao, H.; Li, H. Design of multi-wing 3D chaotic systems with only stable equilibria or no equilibrium point using rotation symmetry. AEU Int. J. Electron. Commun. 2021, 135, 153710. [Google Scholar] [CrossRef]
- Sahoo, S.; Roy, B.K. Design of multi-wing chaotic systems with higher largest Lyapunov exponent. Chaos Solitons Fractals 2022, 157, 111926. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, L.; Xiang, J.; Bao, H.; Li, H. Generating multi-wing hidden attractors with only stable node-foci via non-autonomous approach. Phys. Scr. 2021, 96, 125220. [Google Scholar] [CrossRef]
- Li, C.; Sprott, J.C.; Zhang, X.; Chai, L.; Liu, Z. Constructing conditional symmetry in symmetric chaotic systems. Chaos Solitons Fractals 2022, 155, 111723. [Google Scholar] [CrossRef]
- Wang, R.; Li, C.; Kong, S.; Jiang, Y.; Lei, T. A 3D memristive chaotic system with conditional symmetry. Chaos, Solitons Fractals 2022, 158, 111992. [Google Scholar] [CrossRef]
- Li, X.; Zheng, C.; Wang, X.; Cao, Y.; Xu, G. Symmetric coexisting attractors and extreme multistability in chaotic system. Mod. Phys. Lett. B 2021, 35, 2150458. [Google Scholar] [CrossRef]
- Gu, S.; He, S.; Wang, H.; Du, B. Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system. Chaos Solitons Fractals 2021, 143, 110613. [Google Scholar] [CrossRef]
- Liang, Z.; Sun, K.; He, S. Design and dynamics of the multicavity hyperchaotic map based on offset boosting. Eur. Phys. J. Plus 2021, 137, 51. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Dong, E.; Zhao, Y.; Liu, Z. A Conservative Memristive System with Amplitude Control and Offset Boosting. Int. J. Bifurc. Chaos 2022, 32, 2250057. [Google Scholar] [CrossRef]
Range | LEs | State | Attractor Type | Range | LEs | State | Attractor Type |
---|---|---|---|---|---|---|---|
0 - - - - - | Divergence | None | 8.26–8.27 | +0 - - - - | Chaos | Type VIII | |
2–2.99 | 0 - - - - - | Period | Period-1 | 8.28 | +0 - - - - | Chaos | Type IX |
3–3.44 | +0 - - - - | Chaos | Type I | 8.29 | +0 - - - - | Chaos | Type VIII |
3.45–3.94 | +0 - - - - | Chaos | Type VII | 8.30 | +0 - - - - | Chaos | Type IX |
3.95–8.22 | +0 - - - - | Chaos | Type II | 8.31–9 | +0 - - - - | Chaos | Type II |
8.23–8.24 | +0 - - - - | Chaos | Type VIII | 8.31–9 | +0 - - - - | Chaos | Type II |
8.25 | +0 - - - - | Chaos | Type IX |
Range | LEs | State | Attractor Type | Range | LEs | State | Attractor Type |
---|---|---|---|---|---|---|---|
0 - - - - - | Divergence | None | 2.11–2.99 | +0 - - - - | Chaos | Type IV | |
2–2.01 | +0 - - - - | Chaos | Type X | 3–6.59 | 0 - - - - - | Period | Period-1 |
2.02–2.03 | +0 - - - - | Chaos | Type IV | 6.60–6.79 | +0 - - - - | Weak chaos | Type V |
2.04–2.05 | +0 - - - - | Chaos | Type XI | 6.79–10.61 | +0 - - - - | Weak chaos | Type I |
2.06–2.09 | +0 - - - - | Chaos | Type IV | 10.62–12 | +0 - - - - | Chaos | Type III |
2.1 | +0 - - - - | Chaos | Type X |
Range | LEs | State | Attractor Type | Range | LEs | State | Attractor Type |
---|---|---|---|---|---|---|---|
0 - - - - - | Divergence | None | 2.02–3.03 | +0 - - - - | Period | Period-2 | |
0–1.64 | +0 - - - - | Chaos | Type II | 3.04–4.29 | +0 - - - - | Chaos | Type I |
1.65–1.88 | +0 - - - - | Chaos | Type I | 4.3–8 | +0 - - - - | Period | Period-2 |
1.89–2.01 | +0 - - - - | Chaos | Type V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Wen, J.; Mou, J. Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors. Mathematics 2023, 11, 24. https://doi.org/10.3390/math11010024
Guo Z, Wen J, Mou J. Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors. Mathematics. 2023; 11(1):24. https://doi.org/10.3390/math11010024
Chicago/Turabian StyleGuo, Zhenggang, Junjie Wen, and Jun Mou. 2023. "Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors" Mathematics 11, no. 1: 24. https://doi.org/10.3390/math11010024
APA StyleGuo, Z., Wen, J., & Mou, J. (2023). Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors. Mathematics, 11(1), 24. https://doi.org/10.3390/math11010024