On the Degree Distribution of Haros Graphs
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Proof of Theorem 1
Appendix A.2. Proof of Theorem 2
References
- Hardy, G.H.; Wright, E.M.; Heath-Brown, D.R.; Silverman, J.H. An Introduction to the Theory of Numbers, 6th ed.; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Niqui, M. Exact arithmetic on the Stern-Brocot tree. J. Discret. Algorithms 2007, 5, 356–379. [Google Scholar] [CrossRef] [Green Version]
- Vuillemin, J. Exact real computer arithmetic with continued fractions. In Proceedings of the 1988 ACM Conference on LISP and Functional Programming, Snowbird, UT, USA, 25–27 July 1988; pp. 14–27. [Google Scholar]
- Angell, D. Irrationality and Transcendence in Number Theory; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022. [Google Scholar]
- Adamczewski, B.; Bugeaud, Y. On the complexity of algebraic numbers, II. Continued fractions. Acta Math. 2005, 195, 1–20. [Google Scholar] [CrossRef]
- Khinchin, A.Y. Continued Fractions; Translated from the Third (1961) Russian Edition. Reprint of the 1964 Translation Edition; Dover Publications: New York, NY, USA, 1997. [Google Scholar]
- Bonnano, C.; Isola, S. Orderings of the rationals and dynamical systems. Colloq. Math. 2009, 116, 165–189. [Google Scholar] [CrossRef]
- Calero-Sanz, J.; Luque, B.; Lacasa, L. Haros graphs: An exotic representation of real numbers. J. Complex Netw. 2022, 10, cnac043. [Google Scholar] [CrossRef]
- Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuño, J.C. From time series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 2008, 105, 4972–4975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luque, B.; Lacasa, L.; Ballesteros, F.J.; Robledo, A. Feigenbaum Graphs: A Complex Network Perspective of Chaos. PLoS ONE 2011, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luque, B.; Lacasa, L.; Ballesteros, F.J.; Robledo, A. Analytical properties of horizontal visibility graphs in the Feigenbaum scenario. Chaos Interdiscip. J. Nonlinear Sci. 2012, 22, 013109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núnez, A.M.; Luque, B.; Lacasa, L.; Gómez, J.P.; Robledo, A. Horizontal visibility graphs generated by type-I intermittency. Phys. Rev. E 2013, 87, 052801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, G.A.; Singerman, D.W.K. The modular group and generalized Farey graphs. Groups St. Andrews 1989 1991, 2, 316. [Google Scholar]
- Kurkofka, J. The Farey graph is uniquely determined by its connectivity. J. Comb. Theory Ser. B 2021, 151, 223–234. [Google Scholar] [CrossRef]
- Kurkofka, J. Ubiquity and the Farey graph. Eur. J. Comb. 2021, 95, 103326. [Google Scholar] [CrossRef]
- Luque, B.; Lacasa, L. Canonical horizontal visibility graphs are uniquely determined by their degree sequence. Eur. Phys. J. Spec. Top. 2017, 226, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, R.; Lacasa, L.; Nicosia, V. On the spectral properties of Feigenbaum graphs. J. Phys. A Math. Theor. 2019, 53, 025702. [Google Scholar] [CrossRef] [Green Version]
- Tsigaridas, E.P.; Emiris, I.Z. Univariate polynomial real root isolation: Continued fractions revisited. In Proceedings of the European Symposium on Algorithms, Zurich, Switzerland, 11–13 September 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 817–828. [Google Scholar]
- Welch, L.; Scholtz, R. Continued fractions and Berlekamp’s algorithm. IEEE Trans. Inf. Theory 1979, 25, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Cvitanovic, P.; Shraiman, B.; Söderberg, B. Scaling laws for mode lockings in circle maps. Phys. Scr. 1985, 32, 263. [Google Scholar] [CrossRef]
- Muir, T.; Metzler, W.H. A Treatise on the Theory of Determinants; Courier Corporation: New York, NY, USA, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calero-Sanz, J. On the Degree Distribution of Haros Graphs. Mathematics 2023, 11, 92. https://doi.org/10.3390/math11010092
Calero-Sanz J. On the Degree Distribution of Haros Graphs. Mathematics. 2023; 11(1):92. https://doi.org/10.3390/math11010092
Chicago/Turabian StyleCalero-Sanz, Jorge. 2023. "On the Degree Distribution of Haros Graphs" Mathematics 11, no. 1: 92. https://doi.org/10.3390/math11010092
APA StyleCalero-Sanz, J. (2023). On the Degree Distribution of Haros Graphs. Mathematics, 11(1), 92. https://doi.org/10.3390/math11010092