Next Article in Journal
Equilibrium Position of a Particle in a Microchannel Flow of Newtonian and Power-Law Fluids with an Obstacle
Previous Article in Journal
Flow of Newtonian Incompressible Fluids in Square Media: Isogeometric vs. Standard Finite Element Method
Previous Article in Special Issue
Gorenstein Flat Modules of Hopf-Galois Extensions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Ore Extension of Group-Cograded Hopf Coquasigroups

1
College of Science, Nanjing Agricultural University, Nanjing 210095, China
2
Xixi Branch School, Jiangsu Xishan Senior High School, Wuxi 214151, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(17), 3703; https://doi.org/10.3390/math11173703
Submission received: 12 July 2023 / Revised: 17 August 2023 / Accepted: 25 August 2023 / Published: 28 August 2023
(This article belongs to the Special Issue Hopf-Type Algebras, Lie Algebras, Quantum Groups and Related Topics)

Abstract

:
The aim of this paper is the Ore extension of group-cograded Hopf coquasigroups. This paper first shows a categorical interpretation and some examples of group-cograded Hopf coquasigroups, and then provides a necessary and sufficient condition for the Ore extension of group-cograded Hopf coquasigroups to be group-cograded Hopf coquasigroups. Finally, a certain isomorphism between Ore extensions are considered.

1. Introduction

A version of the non-commutative polynomial ring, introduced by Ore in [1], has become one of the most basic and useful constructions in ring theory. Such a polynomial ring is now referred to as the Ore extension. From the perspective of quantum groups [2] and Hopf algebras [3,4], the Ore extension is very important for constructing examples of Hopf algebras that are neither commutative nor cocommutative. These extensions are also called skew polynomial rings.
In recent years, the Ore extension has been widely applied to other branches of Hopf algebra. Many new examples (usually finite dimensional) with special properties are constructed through Ore extension, such as pointed Hopf algebras, co-Frobenius Hopf algebras, Artin-Schelter regular algebraS [5] and quasitriangular Hopf algebras.
In [6], Aleksandr N. Panov introduced the Hopf–Ore extensions and gave the necessary and sufficient conditions for the Ore extension of a Hopf algebra to be a Hopf algebra. Zhao Lihui and Lu Diming [7] generalized the theory of Hopf–Ore extensions on Hopf algebras to multiplier Hopf algebras. Li Chao and Li Jinqi [8] introduced the concept of Ambikew Hopf π -coalgebras, which can be obtained from Hopf π -coalgebras through twice Ore extensions. Jiao Zhengming [9] further generalized the Hopf-Ore extensions theory to Hopf coquasigroups. Afterwards, Wang Dingguo and Lu Daowei [10] extended the Ore extension of Hopf algebras to the Hopf group coalgebras.
Therefore, there is a natural question: Does the Ore extension still hold for group-cograded Hopf coquasigroups? This is the motivation of our paper. For this question, we provide a positive answer in this paper. The first matter we have to resolve is how to define the extension of group-cograded Hopf coquasigroups. This paper is organized as follows.
In Section 2, we recall some concepts that will be used in the following section, such as Hopf coquasigroups, Ore extensions, and the Turaev category.
In Section 3, we provide the definition of group-cograded Hopf coquasigroups and provide a categorical interpretation and some interesting examples.
In Section 4, we introduce the concept of the Ore extension for group-cograded Hopf coquasigroups and provide an equivalent condition that characterizes them as still being group-cograded Hopf coquasigroups. Finally, an isomorphism theorem of group-cograded Hopf coquasigroups is presented.

2. Preliminaries

In this section, we review some basic definitions that need to be used in the following, such as Hopf coquasigroups, the Ore extension of algebras, the Ore extension of Hopf coquasigroups, and the Turaev category. Throughout this article, all spaces we considered are over a fixed field k.

2.1. Hopf Coquasigroups and Ore Extensions

First, let us recall the definition of the Ore extension of an algebra from [2]. Let A be an algebra, and let τ be an algebra endomorphism of A. A linear endomorphism δ of A is called an τ -derivation of A if for any a , b A ,
δ ( a b ) = δ ( a ) b + τ ( a ) δ ( b ) .
This condition implies δ ( 1 ) = 0 .
The Ore extension R = A [ y ; τ , δ ] of A is an algebra generated by the algebra A and the variable y with the relation
y a = τ ( a ) y + δ ( a ) ,
for all a A .
Recall from [11] that a Hopf coquasigroup H is a unital associative algebra equipped with counital ϵ : H k and algebra homomorphisms Δ : H H H and linear map S : H H such that
( m i d ) ( S i d i d ) ( i d Δ ) Δ = 1 i d = ( m i d ) ( i d S i d ) ( i d Δ ) Δ ,
( i d m ) ( i d i d S ) ( Δ i d ) Δ = i d 1 = ( i d m ) ( i d S i d ) ( Δ i d ) Δ .
In this paper, we use Sweedler notation. The conditions (2) and (3) are expressed as
S ( h ( 1 ) ) h ( 2 ) ( 1 ) h ( 2 ) ( 2 ) = 1 h = h ( 1 ) S ( h ( 2 ) ( 1 ) ) h ( 2 ) ( 2 ) , h ( 1 ) ( 1 ) S ( h ( 1 ) ( 2 ) ) h ( 2 ) = h 1 = h ( 1 ) ( 1 ) h ( 1 ) ( 2 ) S ( h ( 2 ) ) ,
for all h H .
Let H be a Hopf coquasigroup. R = H [ y ; τ , δ ] is called the Hopf coquasigroup-Ore extension in [9] if R is a Hopf coquasigroup with sub-Hopf coquasigroup H, and there are r 1 , r 2 H such that Δ ( y ) = y r 1 + r 2 y .

2.2. The Turaev Category

The Turaev category as an special symmetric monoidal category was introduced by Caenepeel in [12]. Let K be a commutative ring. A Turaev K-module is a couple M ̲ = ( X , M ) , where X is a set, and M = ( M x ) x X is a family of K-modules indexed by X. A morphism between two T-modules ( X , M ) and ( Y , N ) is a couple φ ̲ = ( f , φ ) , where f : Y X is a function, and φ = ( φ y : M f ( y ) N y ) y Y is a family of linear maps indexed by Y. The composition of φ ̲ : M ̲ N ̲ and φ ̲ : N ̲ P ̲ = ( Z , P ) is defined as follows:
ψ ̲ φ ̲ = ( f g , ( ψ z φ g ( z ) ) z Z ) .
The category of Turaev K-modules is called the Turaev category and denoted by T K . When K is the field k, then T K = T k .

3. Group-Cograded Hopf Coquasigroups

Let G be a group with the unit 1. First, we introduce group-cograded Hopf coquasigroups.
Definition 1. 
H = ( p G H p , m , μ , Δ , ϵ , S ) is called a group-cograded Hopf coquasigroup over field k if the following conditions hold:
(1) 
Each H p is an unital associative k-algebra with multiplication m p and unit μ p .
H p H q = 0 whenever p , q G and p q , and μ p ( 1 k ) = 1 p .
(2) 
Comultiplication Δ is a family of algebra homomorphisms { Δ p , q : H p q H p H q } p , q G , and counit ϵ : H 1 k is an algeba homomorphism in the sense that, for p G ,
( i d H p ϵ ) Δ p , 1 = ( ϵ i d H p ) Δ 1 , p = i d H p , ϵ ( 1 1 ) = 1 k .
(3) 
Antipode S is an algebra anti-homomorphism with S = { S p : H p H p 1 } p G , and for any p , q G ,
( m q i d H p ) ( S q 1 i d H q i d H p ) ( i d H q 1 Δ q , p ) Δ q 1 , q p = μ q i d H p = ( m q i d H p ) ( i d H q S q 1 i d H p ) ( i d H q Δ q 1 , p ) Δ q , q 1 p , ( i d H p m q ) ( i d H p i d H q S q 1 ) ( Δ p , q i d H q 1 ) Δ p q , q 1 = i d H p μ q
= ( i d H p m q ) ( i d H p S q 1 i d H q ) ( Δ p , q 1 i d H q ) Δ p q 1 , q .
Remark 1. 
(1) 
In the following, we use the Sweelder notation for the comultiplication: For any p , q G and h p q H p q ,
Δ p , q ( h p q ) = h ( 1 , p ) h ( 2 , q ) .
The conditions (4) and (5) are then expressed as
S q 1 ( h ( 1 , q 1 ) ) h ( 21 , q ) h ( 22 , p ) = 1 q h p = h ( 1 , q ) S q 1 ( h ( 21 , q 1 ) ) h ( 22 , p ) , h ( 11 , p ) h ( 12 , q ) S q 1 ( h ( 2 , q 1 ) ) = h p 1 q = h ( 11 , p ) S q 1 ( h ( 12 , q 1 ) ) h ( 2 , q ) .
(2) 
If the comultiplication Δ of group-cograded Hopf coquasigroup H is coassociative, then H is actually a Hopf group-coalgebra introduced in [13,14].
(3) 
If H = p Q H p is a group-cograded Hopf coquasigroup with each component H p is finite dimensional, then H * = p Q H p * is a group-graded Hopf quasigroup introduced in [15], with Q being a group.
As shown in [12,16], Hopf group coalgbras introduced in [17] (or group-graded Hopf quasigroups) are Hopf algebras (or Hopf quasigroups) in the Turaev category T k . We give a categorical interpretation for group-cograded Hopf coquasigroups as follows.
Proposition 1. 
If H = p G H p is a group-cograded Hopf coquasigroup, then ( G , H ) is a Hopf coquasigroup in the Turaev category T k .
Proof of Proposition 1. 
As H is a group-cograded Hopf coquasigroup and G is a group, then we can provide H ̲ = ( G , H ) a counital coalgebra structure ( H ̲ , Δ ̲ , ϵ ̲ ) by
H ̲ ϵ ̲ k ̲ G i ( ) H 1 = H i ( e ) ϵ k , and H ̲ Δ ̲ H ̲ H ̲ G η G × G H p q = H η ( p , q ) Δ p , q H p H q .
We have
H ̲ Δ ̲ H ̲ H ̲ ϵ ̲ i d ̲ H ̲ G η G × G ( i , G ) G H p Δ e , p H 1 H p ϵ i d H p , and H ̲ Δ ̲ H ̲ H ̲ i d ̲ ϵ ̲ H ̲ G η G × G ( G , i ) G H p Δ p , e H p H 1 i d ϵ H p .
We can also provide ( G , H ) a coalgebra structure ( H ̲ , Δ ̲ , ϵ ̲ ) by
k ̲ μ ̲ H ̲ ( ) e G k μ p H p , and H ̲ H ̲ m ̲ H ̲ G × G δ G H p H p μ p H p ,
such that ( Δ ̲ , ϵ ̲ ) are algebra maps.
Let s : G G , s ( g ) = g 1 . We can then consider a map S ̲ = ( s , S ) in the Turaev category as the antipode of H ̲ , where S is the antipode of group-cograded Hopf coquasigroup H. Next, we will confirm that S ̲ satisfies the conditions (2) and (3) of a Hopf quasigroup.
H ̲ Δ ̲ H ̲ H ̲ i d ̲ Δ ̲ H ̲ H ̲ H ̲ S ̲ i d ̲ i d ̲ H ̲ H ̲ H ̲ m ̲ i d ̲ H ̲ H ̲ G η G × G ( G , η ) G × G × G ( s , G , G ) G × G × G ( δ , G ) G × G H p Δ q , q 1 p D i d Δ q 1 , p E S q i d i d F m q 1 i d H q 1 H p
where D is H q H q 1 p , E is H q H q 1 H p , F is H q 1 H q 1 H p , and
k ̲ H ̲ μ ̲ i d ̲ H ̲ H ̲ ( * ) × G i G G × G k H p μ p i d H p H p .
Since H is a group-cograded Hopf coquasigroup, we have ( m i d ) ( S i d i d ) ( i d Δ ) Δ = 1 i d . Thus, the left-hand side of Equation (2) holds, and the right-hand side is similar.
The proof of Equation (3) for H ̲ is similar to the first one. □
In the end of this section, we provide some examples of group-cograded Hopf coquasigroups.
Example 1. 
Let H be a Hopf coquasigroup. Let H G = p G H p , and let G be the homomorphism group of H, where, for each p G , the algebra H p is a copy of H. Fix an identification isomorphism of algebras i p : H H p . For p , q G , we define a comultiplication Δ p , q : H p q H p H q by
Δ p , q ( i p q ( h ) ) = i p ( h ( 1 ) ) i q ( h ( 2 ) ) ,
where h H . The counit ϵ : H 1 k is defined by ϵ 1 ( i 1 ( h ) ) = ϵ ( h ) k for h H . For p G , the antipode S p : H p H p 1 is given by
S p ( i p ( h ) ) = i p 1 ( S ( h ) ) ,
where h H . It is easy to confirm that H G is a group-cograded Hopf coquasigroup.
Example 2. 
Let H = p Q H p be a Q-graded Hopf quasigroup introduced in [15], where each component H p is finitely dimensional and Q is a group. Thus, H * = p Q H p * is a group-cograded Hopf coquasigroup.
Example 3. 
Let H G be a group-cograded Hopf coquasigroup introduced in Example 1. Set H ˜ G as the same family of algebra ( H p = H ) p G with the same counit, the comultiplication Δ ˜ p , q : H p q H p H q , and the antipode S ˜ p : H p H p 1 defined by
Δ ˜ p , q ( i p q ( h ) ) = i p ( q ( h ( 1 ) ) ) i q ( h ( 2 ) ) , S ˜ p ( i p ( h ) ) = i p 1 ( p ( S ( h ) ) ) = i p 1 ( S ( p ( h ) ) ) ,
where h H . H ˜ G then becomes a group-cograded Hopf coquasigroup following from the definition.

4. The Ore Extension

The aim of this section is to prove a criterion for an Ore extension of a group-cograded Hopf coquasigroup to be a group-cograded Hopf coquasigroup with a coproduct satisfying the relation (6) below. First, we introduce the definition of an Ore extension of a group-cograded Hopf coquasigroup.
Definition 2. 
Let H = p G H p be a group-cograded Hopf coquasigroup. The family R = p G R p = p G H p [ y p ; τ p , δ p ] of k-spaces is called a group-cograded Hopf coquasigroup-Ore extension if R = p G R p is also a group-cograded Hopf coquasigroup, where, for any p G , H p [ y p ; τ p , δ p ] is the Ore extension of H p , and there are r p 1 , r p 2 H p such that
Δ p , q ( y p q ) = y p r q 2 + r p 1 y q .
Note that R 1 = H 1 [ y 1 ; τ 1 , δ 1 ] } is the Hopf coquasigroup-Ore extension in the sense of [9]. By Definition 1, for y q H q , we have
( m q i d H p ) ( S q 1 i d H q i d H p ) ( i d H q 1 Δ q , p ) Δ q 1 , q p ( y p ) = 1 q y p = ( m q i d H p ) ( i d H q S q 1 i d H p ) ( i d H q Δ q 1 , p ) Δ q , q 1 p ( y p ) , ( i d H p m q ) ( i d H p i d H q S q 1 ) ( Δ p , q i d H q 1 ) Δ p q , q 1 ( y p ) = y p 1 q = ( i d H p m q ) ( i d H p S q 1 i d H q ) ( Δ p , q 1 i d H q ) Δ p q 1 , q ( y p ) .
That is,
S q 1 ( y q 1 ) r ( 1 , q ) 2 r ( 2 , p ) 2 + S q 1 ( r q 1 1 ) y q r p 2 + S q 1 ( r q 1 1 ) r q 1 y p = 1 q y p = y q S q 1 ( r ( 1 , q 1 ) 2 ) r ( 2 , p ) 2 + r q 1 S q 1 ( y q 1 ) r p 2 + r q 1 S q 1 ( r q 1 1 ) y p , y p r q 2 S q 1 ( r q 1 2 ) + r p 1 y q S q 1 ( r q 1 2 ) + r ( 1 , p ) 1 r ( 2 , q ) 1 S q 1 ( y q 1 ) = y p 1 q = y p S q 1 ( r q 1 2 ) r q 2 + r p 1 S q 1 ( y q 1 ) r q 2 + r ( 1 , p ) 1 S q 1 ( r ( 2 , q 1 ) 1 ) y q .
Therefore, we have
S q 1 ( r q 1 1 ) r q 1 = r q 1 S q 1 ( r q 1 1 ) = 1 q , r q 2 S q 1 ( r q 1 2 ) = S q 1 ( r q 1 2 ) r q 2 = 1 q , S q 1 ( y q 1 ) r ( 1 , q ) 2 r ( 2 , p ) 2 + S q 1 ( r q 1 1 ) y q r p 2 = y q S q 1 ( r ( 1 , q 1 ) 2 ) r ( 2 , p ) 2 + r q 1 S q 1 ( y q 1 ) r p 2 = 0 , r p 1 y q S q 1 ( r q 1 2 ) + r ( 1 , p ) 1 r ( 2 , q ) 1 S q 1 ( y q 1 ) = r p 1 S q 1 ( y q 1 ) r q 2 + r ( 1 , p ) 1 S q 1 ( r ( 2 , q 1 ) 1 ) y q = 0 .
If r 1 , r 2 satisfy the following conditions
Δ p , q ( r p q 1 ) = r p 1 r q 1 , Δ p , q ( r p q 2 ) = r p 2 r q 2 ,
then we have
( r q i ) 1 = S q 1 ( r q 1 i ) , i = 1 , 2 , ( S q 1 ( y q 1 ) r q 2 + S q 1 ( r q 1 1 ) y q ) r p 2 = ( y q S q 1 ( r q 1 2 ) + r q 1 S q 1 ( y q 1 ) ) r p 2 = 0 , r p 1 ( y q S q 1 ( r q 1 2 ) + r q 1 S q 1 ( y q 1 ) ) = r p 1 ( S q 1 ( y q 1 ) r q 2 + S q 1 ( r q 1 1 ) y q ) = 0 .
Replacing the generating elements y p by y p = y p ( r p 2 ) 1 and r p 1 ( r p 2 ) 1 by r p , we see that
Δ p , q ( y p q ) = Δ p , q ( y p q ( r p q 2 ) 1 ) = Δ p , q ( y p q ) Δ p , q ( ( r p q 2 ) 1 ) = ( y p r q 2 + r p 1 y q ) ( ( r p 2 ) 1 ( r q 2 ) 1 ) = y p ( r p 2 ) 1 r q 2 ( r q 2 ) 1 + r p 1 ( r p 2 ) 1 y q ( r q 2 ) 1 = y p 1 q + r p y q .
Therefore, we always assume in what follows that the elements y p in the group-cograded Hopf coquasigroup-Ore extension satisfy the relations
Δ p , q ( y p q ) = y p 1 q + r p y q ,
for some elements r p H p . As usual, A d r p ( h ) = r p h S p 1 ( r p 1 ) = r p h ( r p ) 1 .
Lemma 1. 
Let H = p G H p be a group-cograded Hopf coquasigroup. If R = p G R p = p G H p [ y p ; τ p , δ p ] is the group-cograded Hopf coquasigroup-Ore extension of H, then
S p 1 ( y p 1 ) = ( r p ) 1 y p ,
where ( r p ) 1 = S p 1 ( r p 1 ) .
Proof of Lemma 1. 
By (6), we have
m p ( S p 1 i d H p ) Δ p 1 , p ( y 1 ) = ϵ ( y 1 ) 1 p = 0 .
Thus,
S p 1 ( y p 1 ) + S p 1 ( r p 1 ) y p = 0 .
Therefore, S p 1 ( y p 1 ) = S p 1 ( r p 1 ) y p = ( r p ) 1 y p . □
Following the above results, we obtain the main theorem of this paper.
Theorem 1. 
Let H = p G H p be a group-cograded Hopf coquasigroup. The group-cograded Hopf coquasigroup R = p G R p = p G H p [ y p ; τ p , δ p ] is then the group-cograded Hopf coquasigroup-Ore extension if and only if
(1) 
there is a character χ : H 1 k such that for any p G , h p H p
τ p ( h p ) = χ ( h ( 1 , 1 ) ) h ( 2 , p ) ;
(2) 
the following relations hold:
χ ( h ( 1 , 1 ) ) h ( 21 , p ) h ( 22 , q ) = A d r p ( h ( 1 , p ) ) χ ( h ( 21 , 1 ) ) h ( 22 , q ) = χ ( h ( 11 , 1 ) ) h ( 12 , p ) h ( 2 , q ) ;
(3) 
the τ p -derivation δ p satisfies the relation
Δ p , q ( δ p q ( h p , q ) ) = δ p ( h ( 1 , p ) ) h ( 2 , q ) + r p h ( 1 , p ) δ q ( h ( 2 , q ) ) .
Proof of Theorem 1. 
The proof is divided into three parts. At Step 1, we show that the comultiplication Δ = p G Δ p can be extended to R = p G R p = p G H p [ y p ; τ p , δ p ] by (6) if and only if the relations (8)–(10) hold. At Step 2, we prove that R 1 admits an extension of the counit from H 1 (in fact this has been proved in [9] ). At Step 3, we show that R has antipode S extending the antipode S | H by (7).
1.
Comultiplication. Assume that the comultiplication Δ | H can be extended to R = p G R p = p G H p [ y p ; τ p , δ p ] (6). The homomorphism Δ then preserves the relation
y p h p = τ p ( h p ) y p + δ p ( h p ) ,
for any p G and h p H p , i.e.,
Δ p , q ( y p q ) Δ p , q ( h p q ) = Δ p , q ( τ p q ( h p q ) ) Δ p , q ( y p q ) + Δ p , q ( δ p q ( h p q ) ) ,
for any h p q H p q . We have
Δ p , q ( y p q ) Δ p , q ( h p q ) = ( y p 1 q + r p y q ) ( h ( 1 , p ) h ( 2 , q ) ) = y p h ( 1 , p ) h ( 2 , q ) + r p h ( 1 , p ) y q h ( 2 , q ) = τ p ( h ( 1 , p ) ) y p h ( 2 , q ) + δ p ( h ( 1 , p ) ) h ( 2 , q ) + r p h ( 1 , p ) τ q ( h ( 2 , q ) ) y q + r p h ( 1 , p ) δ q ( h ( 2 , q ) ) = ( τ p ( h ( 1 , p ) ) h ( 2 , q ) ) ( y p 1 q ) + ( r p h ( 1 , p ) r p 1 τ q ( h ( 2 , q ) ) ) ( r p y q ) + δ p ( h ( 1 , p ) ) h ( 2 , q ) + r p h ( 1 , p ) δ q ( h ( 2 , q ) ) ,
and
Δ p , q ( τ p q ( h p q ) ) Δ p , q ( y p q ) + Δ p , q ( δ p q ( h p q ) ) = Δ p , q ( τ p q ( h p q ) ) ( y p 1 q + r p y q ) + Δ p , q ( δ p q ( h p q ) ) = Δ p , q ( τ p q ( h p q ) ) ( y p 1 q ) + Δ p , q ( τ p q ( h p q ) ) ( r p y q ) + Δ p , q ( δ p q ( h p q ) ) .
It is clear that Δ preserves (11) if and only if the following relations hold:
Δ p , q ( τ p q ( h p q ) ) = τ p ( h ( 1 , p ) ) h ( 2 , q ) ,
Δ p , q ( τ p q ( h p q ) ) = A d r p ( h ( 1 , p ) ) τ q ( h ( 2 , q ) ) , Δ p , q ( δ p q ( h p q ) ) = δ p ( h ( 1 , p ) ) h ( 2 , q ) + r p h ( 1 , p ) δ q ( h ( 2 , q ) ) ,
for any h H p q . The last equation coincides with (10).
We now show that (13) and (14) imply (8) and (9). Let χ ( h 1 ) : = ϵ ( τ 1 ( h 1 ) ) . It is clear that χ ( h 1 ) k . One can regard χ as a mapping χ : H 1 k . If, for any p G , τ is an endomorphism, it follows that
χ ( h 1 g 1 ) = ϵ ( τ 1 ( h 1 g 1 ) ) = ϵ ( τ 1 ( h 1 ) ) ϵ ( τ 1 ( g 1 ) ) = χ ( h 1 ) χ ( g 1 ) , χ ( h 1 + g 1 ) = ϵ ( τ 1 ( h 1 + g 1 ) ) = ϵ ( τ 1 ( h 1 ) ) + ϵ ( τ 1 ( g 1 ) ) = χ ( h 1 ) + χ ( g 1 ) .
For τ p ( h p ) H p by (13), we have
( i d H 1 Δ 1 , p ) Δ 1 , p ( τ p ( h p ) ) = τ 1 ( h ( 1 , 1 ) ) h ( 21 , 1 ) h ( 22 , p ) .
Therefore, by (4), we have
S 1 ( τ 1 ( h ( 1 , 1 ) ) ) ( h ( 21 , 1 ) ) h ( 22 , p ) = 1 1 τ p ( h p ) = τ 1 ( h ( 1 , 1 ) ) S 1 ( ( h ( 21 , 1 ) ) ) h ( 22 , p ) .
Using the formula above, one can recover τ from χ:
χ ( h ( 1 , 1 ) ) h ( 2 , p ) = ϵ ( τ 1 ( h ( 1 , 1 ) ) ) h ( 2 , p ) = ϵ ( τ 1 ( h ( 1 , 1 ) ) ) ϵ ( h ( 21 , 1 ) ) h ( 22 , p ) = ϵ ( τ 1 ( h ( 1 , 1 ) ) ) ϵ ( S 1 ( h ( 21 , 1 ) ) ) h ( 22 , p ) = ϵ ( τ 1 ( h ( 1 , 1 ) ) S 1 ( h ( 21 , 1 ) ) ) h ( 22 , p ) = ( 15 ) ϵ ( 1 1 ) τ p ( h p ) = τ p ( h p ) .
This proves (8). Substituting τ p ( h p ) into (13), we obtain
Δ p , q ( τ p q ( h p q ) ) = τ p ( h ( 1 , p ) ) h ( 2 , q ) = ( 8 ) χ ( h 11 , 1 ) h ( 12 , p ) h ( 2 , q ) ,
and substituting τ p ( h p ) into (14), we obtain
Δ p , q ( τ p q ( h p q ) ) = ( 8 ) Δ p , q ( χ ( h ( 1 , 1 ) ) h ( 2 , p q ) ) = χ ( h ( 1 , 1 ) ) h ( 21 , p ) h ( 22 , q ) = ( 14 ) A d r p ( h ( 1 , p ) ) τ q ( h ( 2 , q ) ) = ( 8 ) A d r p ( h ( 1 , p ) ) χ ( h ( 21 , 1 ) ) h ( 22 , q ) .
Hence,
χ ( h ( 1 , 1 ) ) h ( 21 , p ) h ( 22 . q ) = A d r p ( h ( 1 , p ) ) χ ( h ( 21 , 1 ) ) h ( 22 , q ) = χ ( h ( 11 , 1 ) ) h ( 12 , p ) h ( 2 , q ) .
This proves (9). We have proved that the conditions (8)–(10) are necessary conditions of the comultiplication.
If the conditions (8)–(10) hold, then
Δ p , q ( τ p q ( h p q ) ) = ( 8 ) Δ p , q ( χ ( h ( 1 , 1 ) ) h ( 2 , p q ) ) = χ ( h ( 1 , 1 ) ) h ( 21 , p ) h ( 22 , q ) = ( 9 ) χ ( h ( 11 , 1 ) ) h ( 12 , p ) h ( 2 , q ) = ( 8 ) τ p ( h ( 1 , p ) ) h ( 2 , q ) , Δ p , q ( τ p q ( h p q ) ) = ( 8 ) Δ p , q ( χ ( h ( 1 , 1 ) ) h ( 2 , p q ) ) = χ ( h ( 1 , 1 ) ) h ( 21 , p ) h ( 22 , q ) = ( 9 ) A d r p ( h ( 1 , p ) ) χ ( h ( 21 , 1 ) ) h ( 22 , q ) = ( 8 ) A d r p ( h ( 1 , p ) ) τ q ( h ( 2 , q ) ) .
This proves that the relations (13) and (14) hold and that the comultiplication Δ | H can be extended to a homomorphism Δ : R R R , and Δ is not required to be coassociative.
2.
C o u n i t . For this section, from [9], we know that, as R 1 admits a comultiplication, there is a counit extending ϵ | H 1 and satisfying ϵ ( y 1 ) = 0 . It follows that ϵ admits an extension to R if and only if
ϵ ( δ 1 ( h 1 ) ) = 0 ,
for any h 1 H 1 .
3.
A n t i p o d e . Let R be as in Step 1. Recall that S = p G S p : H p H p 1 , with S p being an antiautomorphism. If R admits an antipode S that can be extended from H to R by means of (7), then S satisfies (4) and (5) and preserves (11). This means that, for any h p H p ,
( m q i d H p ) ( S q 1 i d H q i d H p ) ( i d H q 1 Δ q , p ) Δ q 1 , q p ( y p h p ) = 1 q y p h p = ( m q i d H p ) ( i d H q S q 1 i d H p ) ( i d H q Δ q 1 , p ) Δ q , q 1 p ( y p h p ) , ( i d H p m q ) ( i d H p i d H q S q 1 ) ( Δ p , q i d H q 1 ) Δ p q , q 1 ( y p h ) = y p h p 1 q
= ( i d H p m q ) ( i d H p S q 1 i d H q ) ( Δ p , q 1 i d H q ) Δ p q 1 , q ( y p h p ) ,
and
S p ( h p ) S p ( y p ) = S p ( y p ) S p ( τ p ( h p ) ) + S p ( δ p ( h p ) ) .
We will now prove (16) and (17):
( m q i d H p ) ( S q 1 i d H q i d H p ) ( i d H q 1 Δ q , p ) Δ q 1 , q p ( y p h p ) = ( 11 ) ( m q i d H p ) ( S q 1 i d H q i d H p ) ( i d H q 1 Δ q , p ) Δ q 1 , q p ( τ p ( h p ) y p + δ p ( h p ) ) = ( 6 ) and ( 13 ) ( m q i d H p ) ( S q 1 i d H q i d H p ) ( i d H q 1 Δ q , p ) ( τ q 1 ( h ( 1 , q 1 ) ) y q 1 h ( 2 , q p ) + τ q 1 ( h ( 1 , q 1 ) ) r q 1 h ( 2 , q p ) y q p + Δ q 1 , q p ( δ p ( h p ) ) ) = ( m q i d H p ) ( S q 1 i d H q i d H p ) ( i d H q 1 Δ q , p ) ( τ q 1 ( h ( 1 , q 1 ) ) y q 1 h ( 2 , q p ) + τ q 1 ( h ( 1 , q 1 ) ) r q 1 h ( 2 , q p ) y q p ) + ( m q i d H p ) ( S q 1 i d H q i d H p ) ( i d H q 1 Δ q , p ) Δ q 1 , q p ( δ p ( h p ) ) = ( 4 ) S q 1 ( y q 1 ) S q 1 ( τ q 1 ( h ( 1 , q 1 ) ) ) h ( 21 , q ) h ( 22 , p ) + S q 1 ( r q 1 ) S q 1 ( τ q 1 ( h ( 1 , q 1 ) ) ) h ( 21 , q ) y q h ( 22 , p ) + S q 1 ( r q 1 ) S q 1 ( τ q 1 ( h ( 1 , q 1 ) ) ) h ( 21 , q ) r q h ( 22 , p ) y p + 1 q δ p ( h p ) = ( 15 ) S q 1 ( y q 1 ) τ p ( h ) + S q 1 ( r q 1 ) y q τ p ( h ) + S q 1 ( r q 1 ) r q τ p ( h ) y p + 1 q δ p ( h p ) = S q 1 ( y q 1 ) τ p ( h p ) + S q 1 ( r q 1 ) y q τ p ( h p ) + 1 q τ p ( h ) y p + 1 q δ p ( h p ) = ( S q 1 ( y q 1 ) + S q 1 ( r q 1 ) y q ) τ p ( h p ) + 1 q ( τ p ( h p ) y p + δ p ( h p ) ) = 1 q y p h p .
This proves (16). Relation (17) can be proved similarly.
For (18), it follows from (7) that, for any h H p ,
S p ( h p ) ( r p 1 ) 1 y p 1 = ( r p 1 ) 1 y p 1 S p ( τ p ( h p ) ) + S p ( δ p ( h p ) ) , S p ( h p ) ( r p 1 ) 1 y p 1 = ( r p 1 ) 1 τ p 1 ( S p ( τ p ( h p ) ) ) y p 1 ( r p 1 ) 1 δ p 1 ( S p ( τ p ( h p ) ) ) + S p ( δ p ( h p ) ) .
Condition (18) holds if and only if the following two conditions hold:
S p ( h p ) ( r p 1 ) 1 = ( r p 1 ) 1 τ p 1 ( S p ( τ p ( h p ) ) ) ,
r p 1 S p ( δ p ( h p ) ) = δ p 1 ( S p ( τ p ( h p ) ) ) .
We will now prove (19). We have
τ p 1 ( S p ( τ p ( h p ) ) ) = ( 8 ) τ p 1 ( S p ( χ ( h ( 1 , 1 ) ) h ( 2 , p ) ) ) = χ ( h ( 1 , 1 ) ) τ p 1 ( S p ( h ( 2 , p ) ) ) = ( 8 ) χ ( h ( 1 , 1 ) ) χ ( S p ( h ( 2 , p ) ) ( 1 , 1 ) ) S p ( h ( 2 , p ) ) ( 2 , p 1 ) = χ ( h ( 1 , 1 ) ) χ ( S 1 ( h ( 22 , 1 ) ) ) S p ( h ( 21 , p ) ) = χ ( S 1 ( h ( 22 , 1 ) ) ) S p ( χ ( h ( 1 , 1 ) ) h ( 21 , p ) ) = ( 9 ) χ ( S 1 ( h ( 22 , 1 ) ) ) S p ( A d r p ( h ( 1 , p ) ) χ ( h ( 21 , 1 ) ) ) = S p ( A d r p ( h ( 1 , p ) ) ) χ ( h ( 21 , 1 ) S 1 ( h ( 22 , 1 ) ) ) = S p ( A d r p ( h p ) ) = r p 1 S p ( h p ) ( r p 1 ) 1 = A d r p 1 ( S p ( h p ) ) .
Our next objective is to prove (20). It follows from (8) that
S p ( τ p ( h p ) ) = S p ( χ ( h ( 1 , 1 ) ) h ( 2 , p ) ) .
Therefore, (20) can be represented in an equivalent form as
r p 1 S p ( δ p ( h p ) ) = χ ( h ( 1 , 1 ) ) δ p 1 ( S p ( h ( 2 , p ) ) ) .
We denote L p = r p 1 S p ( δ p ( h p ) ) and M p = χ ( h ( 1 , 1 ) ) δ p 1 ( S p ( h ( 2 , p ) ) ) .
From (10), we have
Δ p , p 1 ( δ 1 ( h 1 ) ) = δ p ( h ( 1 , p ) ) h ( 2 , p 1 ) + r p h ( 1 , p ) δ p 1 ( h ( 2 , p 1 ) ) ,
and we apply m p ( i d H p S p 1 ) to the above equality. We thus obtain
m p ( i d H p S p 1 ) ( Δ p , p 1 ( δ 1 ( h 1 ) ) ) = m p ( i d H p S p 1 ) ( δ p ( h ( 1 , p ) ) h ( 2 , p 1 ) + r p h ( 1 , p ) δ p 1 ( h ( 2 , p 1 ) ) ) , 0 = ϵ ( δ 1 ( h 1 ) ) 1 p = δ p ( h ( 1 , p ) ) S p 1 ( h ( 2 , p 1 ) ) + r p h ( 1 , p ) S p 1 ( δ p 1 ( h ( 2 , p 1 ) ) ) .
Thus,
r p 1 δ p ( h ( 1 , p ) ) S p 1 ( h ( 2 , p 1 ) ) = h ( 1 , p ) S p 1 ( δ p 1 ( h ( 2 , p 1 ) ) ) .
Therefore, for any h p 1 H p 1 ,
L p 1 = r p S p 1 ( δ p 1 ( h p 1 ) ) = r p S p 1 ( h ( 1 , p 1 ) ) h ( 21 , p ) S p 1 ( δ p 1 ( h ( 22 , p 1 ) ) ) = ( 22 ) r p S p 1 ( h ( 1 , p 1 ) ) ( r p ) 1 δ p ( h ( 21 , p ) ) S p 1 ( h ( 22 , p 1 ) ) = A d r p ( S p 1 ( h ( 1 , p 1 ) ) ) δ p ( h ( 21 , p ) ) S p 1 ( h ( 22 , p 1 ) ) .
On the other hand, for any h 1 H 1 , we have ϵ ( h 1 ) 1 p = h ( 1 , p ) S p 1 ( h ( 2 , p 1 ) ) . The action by δ p on both sides gives
0 = δ p ( h ( 1 , p ) ) S p 1 ( h ( 2 , p 1 ) ) + τ p ( h ( 1 , p ) ) δ p ( S p 1 ( h ( 2 , p 1 ) ) ) .
We then have
M p 1 = χ ( h ( 1 , 1 ) ) δ p ( S p 1 ( h ( 2 , p 1 ) ) ) = χ ( h ( 1 , 1 ) ) τ p ( S p 1 ( h ( 21 , p 1 ) ) h ( 221 , p ) ) δ p ( S p 1 ( h ( 222 , p 1 ) ) ) = χ ( h ( 1 , 1 ) ) τ p ( S p 1 ( h ( 21 , p 1 ) ) ) τ p ( h ( 221 , p ) ) δ p ( S p 1 ( h ( 222 , p 1 ) ) ) = ( 23 ) χ ( h ( 1 , 1 ) ) τ p ( S p 1 ( h ( 21 , p 1 ) ) ) δ p ( h ( 221 , p ) ) S p 1 ( h ( 222 , p 1 ) ) = τ p ( S p 1 ( χ ( h ( 1 , 1 ) ) h ( 21 , p 1 ) ) ) δ p ( h ( 221 , p ) ) S p 1 ( h ( 222 , p 1 ) ) = τ p ( S p 1 ( χ ( h ( 11 , 1 ) ) h ( 12 , p 1 ) ) ) δ p ( h ( 21 , p ) ) S p 1 ( h ( 22 , p 1 ) ) = χ ( h ( 11 , 1 ) ) τ p ( S p 1 ( h ( 12 , p 1 ) ) ) δ p ( h ( 21 , p ) ) S p 1 ( h ( 22 , p 1 ) ) = χ ( h ( 11 , 1 ) ) A d r p ( S p 1 ( h ( 122 , p 1 ) ) ) χ ( S 1 ( h ( 121 , 1 ) ) ) δ p ( h ( 21 , p ) ) S p 1 ( h ( 22 , p 1 ) ) = χ ( h ( 11 , 1 ) S 1 ( h ( 121 , 1 ) ) ) A d r p ( S p 1 ( h ( 122 , p 1 ) ) ) δ p ( h ( 21 , p ) ) S p 1 ( h ( 22 , p 1 ) ) = A d r p ( S p 1 ( h ( 1 , p 1 ) ) ) δ p ( h ( 21 , p ) ) S p 1 ( h ( 22 , p 1 ) ) .
We therefore conclude that L p = M p . This proves both the relation (21) and the existence of the antipode.
Following this theorem, we can obtain some special results, e.g., Theorem 3.5 in [10] and Theorem 3.3 in [9].
Corollary 1. 
If group-cograded Hopf coquasigroup H = p G H p satisfies coassociativity, then the group-cograded Hopf coquasigroup-Ore extension is the Hopf coquasigroup-Ore extension in the sense of [10]. The main conclusion (i.e., Theorem 1) in this article is Theorem 3.5 in [10].
Corollary 2. 
If the group G is trivial, i.e., G = { 1 } , then R 1 = H 1 [ y 1 ; τ 1 , δ 1 ] } is the Hopf coquasigroup-Ore extension in the sense of [9]. The main conclusion (i.e., Theorem 1) in this article is Theorem 3.3 in [9].
Example 4. 
Let Q be a Hopf coquasigroup with grouplike element r 1 , r 2 , and let H = p G H p be a group-cograded Hopf coquasigroup with each branch H p = Q for any p G . The Ore extension of Q is Q [ y ; τ , δ ] . Let R = p G R p = p G H p [ y p ; τ p , δ p ] be a group-cograded Hopf coquasigroup with each branch R p = H p [ y p ; τ p , δ p ] = Q [ y ; τ , δ ] . In the following, we show that R is a group-cograded Hopf coquasigroup-Ore extension.
1
As Q is a Hopf coquasigroup by Theorem 3.3(1) in [9], we have χ : Q k . Since H 1 = H p = Q , for any p G , h p H p , we have
τ p ( h p ) = χ ( h ( 1 , 1 ) ) h ( 2 , p ) ;
2
Since each branch of H is equal to Q, and for p , q G , we have
χ ( h ( 1 , 1 ) ) h ( 21 , p ) h ( 22 , q ) = χ ( h ( 1 , 1 ) ) h ( 21 , 1 ) h ( 22 , 1 ) .
By Theorem 3.3(2) in [9], we have
χ ( h ( 1 , 1 ) ) h ( 21 , 1 ) h ( 22 , 1 ) = A d r 1 ( h ( 1 , 1 ) ) χ ( h ( 21 , 1 ) ) h ( 22 , 1 ) = χ ( h ( 11 , 1 ) ) h ( 12 , 1 ) h ( 2 , 1 ) .
Therefore, we can obtain (9).
3
Similarly, for the τ p -derivation δ p , we can easily confirm that
Δ p , q ( δ p q ( h p , q ) ) = δ p ( h ( 1 , p ) ) h ( 2 , q ) + r p h ( 1 , p ) δ q ( h ( 2 , q ) )
holds.
Following Theorem 1 in this paper, R is a group-cograded Hopf coquasigroup-Ore extension.
Proposition 2. 
If the group-cograded Hopf coquasigroup R = p G R p = p G H p [ y p ; τ p , δ p ] is the group-cograded Hopf coquasigroup-Ore extension, then
Δ p , q ( δ p q ( r p , q ) r p , q 1 ) = δ p ( r p ) r p 1 1 + r p δ q ( r q ) r q 1 .
Proof of Proposition 2. 
Since Δ p , q ( r p q 1 ) = r p 1 r q 1 and r p = r p 1 ( r p 2 ) 1 , it follows that
Δ p , q ( r p , q ) = Δ p , q ( r p q 1 ( r p q 2 ) 1 ) = Δ p , q ( r p q 1 ) Δ p , q ( ( r p q 2 ) 1 ) = ( r p 1 r q 1 ) ( ( r p 2 ) 1 ( r q 2 ) 1 ) = r p 1 ( r p 2 ) 1 r q 1 ( r q 2 ) 1 = r p r q .
According to Formula (10), the following can be obtained:
Δ p , q ( δ p q ( r p , q ) r p , q 1 ) = Δ p , q ( δ p q ( r p , q ) ) Δ p , q ( r p , q 1 ) = ( δ p ( r p ) r q + r p 2 δ q ( r q ) ) ( r p 1 r q 1 ) = δ p ( r p ) r p 1 1 q + r p δ q ( r q ) r q 1 .
At the end of this section, let H and H be group-cograded Hopf coquasigroups. Let R = p G R p = p G H p [ y p ; τ p , δ p ] be the Ore extension of H with Δ p , q ( y p q ) = y p 1 q + r p y q , and let R = p G R p = p G H p [ y p ; τ p , δ p ] be the Ore extension of H with Δ p , q ( y p q ) = y p 1 q + r p y q . We will now discuss the isomorphism between Ore extensions of two group-cograded Hopf coquasigroups.
Theorem 2. 
Let R and R be the group-cograded Hopf coquasigroup-Ore extension of H and H , respectively. R is then isomorphic to R if there is an isomorphism φ : H H such that
φ p ( r p ) = r p , τ p ( φ p ( h p ) ) = φ p ( τ p ( h p ) ) , δ p ( φ p ( h p ) ) = φ p ( δ p ( h p ) ) + φ p ( τ p ( h p ) ) d p d p φ p ( h p ) ,
where d p H p such that Δ p , q ( d p q ) = d p 1 q + r p d q .
Proof of Theorem 2. 
Let φ ¯ p ( y p ) = y p + d p . φ can then be extended from φ : H H to φ ¯ : R R . For all h p H p , we have
φ ¯ p ( y p h p ) = φ ¯ p ( τ p ( h p ) y p + δ p ( h p ) ) = φ ¯ p ( τ p ( h p ) ) φ ¯ p ( y p ) + φ ¯ p ( δ p ( h p ) ) = φ ¯ p ( τ p ( h p ) ) ( y p + d p ) + φ ¯ p ( δ p ( h p ) ) , φ ¯ p ( y p ) φ ¯ p ( h p ) = ( y p + d p ) φ ¯ p ( h p ) = y p φ ¯ p ( h p ) + d p φ ¯ p ( h p ) = τ p ( φ ¯ p ( h p ) ) y p + δ p ( φ ¯ p ( h p ) ) + d p φ ¯ p ( h p ) = τ p ( φ ¯ p ( h p ) ) y p + φ ¯ p ( δ p ( h p ) ) + φ ¯ p ( τ p ( h p ) ) d p d p φ ¯ p ( h p ) + d p φ ¯ p ( h p ) = τ p ( φ ¯ p ( h p ) ) ( y p + d p ) + φ ¯ p ( δ p ( h p ) ) = φ ¯ p ( τ p ( h p ) ) ( y p + d p ) + φ ¯ p ( δ p ( h p ) ) .
Therefore, we obtain
φ ¯ p ( y p h p ) = φ ¯ p ( y p ) φ ¯ p ( h p ) .
Since
Δ p , q ( φ ¯ p q ( y p q ) ) = Δ p , q ( y p q + d p q ) = Δ p , q ( y p q ) + Δ p , q ( d p q ) = y p 1 q + r p y q + d p 1 q + r p d q = ( y p + d p ) 1 q + r p ( y q + d q ) , ( φ ¯ p φ ¯ q ) Δ p , q ( y p q ) = ( φ ¯ p φ ¯ q ) ( y p 1 q + r p y q ) = φ ¯ q ( y p ) 1 q + φ ¯ p ( r p ) φ ¯ q ( y p ) = ( y p + d p ) 1 q + r p ( y q + d q ) ,
it follows that
Δ p , q ( φ ¯ p q ( y p q ) ) = ( φ ¯ p φ ¯ q ) Δ p , q ( y p q ) .
We then have R R . □

5. Conclusions

In this paper, a new algebraic structure is presented, which is crosslinked by Hopf group coalgebras and Hopf coquasigroups. We call it a group-cograded Hopf coquasigroup. Subsequently, we provided the Ore extension of a group-cograded Hopf coquasigroup. For a group-cograded Hopf coquasigroup H = p G H p , if R = p G R p = p G H p [ y p ; τ p , δ p ] is a group-cograded Hopf coquasigroup-Ore extension, then R = p G R p is also a group-cograded Hopf coquasigroup. A possible topic for further research is Ore extensions of Multiplier Hopf coquasigroups [18].

Author Contributions

Conceptualization, L.Z. and T.Y.; writing—original draft preparation, L.Z., B.J. and H.L.; writing—review and editing, T.Y.; supervision, T.Y.; project administration, T.Y.; funding acquisition, T.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was partially funded by the Fundamental Research Funds for the Central Universities, Nanjing Agricultural University (Grant No. XUEKEN20220XX) and China Postdoctoral Science Foundation (Grant No. 2019M651764).

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ore, O. Theory of Non-Commutative Polynomials. Ann. Math. 1933, 34, 480–508. [Google Scholar] [CrossRef]
  2. Kassel, C. Quantum Groups; Springer: New York, NY, USA, 1995. [Google Scholar]
  3. Sweedler, M.E. Hopf Algebras; Benjamin: New York, NY, USA, 1969. [Google Scholar]
  4. Montgomery, S. Hopf Algebras and Their Actions on Rings; Conference Board of the Mathematical Sciences: Poughkeepsie, NY, USA; American Mathematical Society: Providence, RI, USA, 1993. [Google Scholar]
  5. Zhang, J. Double ore extensions. J. Pure Appl. Algebra 2008, 212, 2668–2690. [Google Scholar] [CrossRef]
  6. Panov, A.N. Ore extensions of Hopf algebras. Math. Notes 2003, 74, 401–410. [Google Scholar] [CrossRef]
  7. Zhao, L.; Lu, D. Ore Extensions of Multiplier Hopf Algebras. Commun. Algebra 2012, 40, 248–272. [Google Scholar] [CrossRef]
  8. Li, C.; Li, J. Ore extensions of Hopf π-coalgebras. Int. J. Algebra 2020, 14, 247–257. [Google Scholar] [CrossRef]
  9. Jiao, Z.; Meng, H. Ore extensions of Hopf coquasigroups. Math. Notes 2014, 95, 338–345. [Google Scholar] [CrossRef]
  10. Wang, D.; Lu, D. Ore extensions of Hopf group coalgebras. J. Korean Math. Soc. 2014, 51, 325–344. [Google Scholar] [CrossRef]
  11. Klim, J.; Majid, S. Hopf quasigroups and the algebraic 7-sphere. J. Algebra 2010, 323, 3067–3110. [Google Scholar] [CrossRef]
  12. Caenepeel, S.; De Lombaerde, M. A categorical approach to Turaev’s Hopf group-coalgebras. Commun. Algebra 2006, 34, 2631–2657. [Google Scholar] [CrossRef]
  13. Virelizier, A. Hopf group coalgebras. J. Pure Appl. Algebra 2002, 171, 75–122. [Google Scholar] [CrossRef]
  14. Zhang, S.; Wang, S. A New Approach to Braided T-Categories and Generalized Quantum Yang-Baxter Equations. Mathematics 2022, 10, 968. [Google Scholar] [CrossRef]
  15. Shi, G.; Wang, S. Q-graded Hopf quasigroups. arXiv 2018, arXiv:1812.07321. [Google Scholar]
  16. Liu, H.; Yang, T.; Zhu, L. Yetter–Drinfeld Modules for Group-Cograded Hopf Quasigroups. Mathematics 2022, 10, 1388. [Google Scholar] [CrossRef]
  17. Turaev, V. Homotopy field theory in dimension 3 and crossed group-categories. arXiv 2000, arXiv:math/0005291. [Google Scholar]
  18. Yang, T. Multiplier Hopf Coquasigroup: Motivation and Biduality. Mathematics 2022, 10, 4006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhu, L.; Jin, B.; Liu, H.; Yang, T. The Ore Extension of Group-Cograded Hopf Coquasigroups. Mathematics 2023, 11, 3703. https://doi.org/10.3390/math11173703

AMA Style

Zhu L, Jin B, Liu H, Yang T. The Ore Extension of Group-Cograded Hopf Coquasigroups. Mathematics. 2023; 11(17):3703. https://doi.org/10.3390/math11173703

Chicago/Turabian Style

Zhu, Lingli, Bingbing Jin, Huili Liu, and Tao Yang. 2023. "The Ore Extension of Group-Cograded Hopf Coquasigroups" Mathematics 11, no. 17: 3703. https://doi.org/10.3390/math11173703

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop