Fixed Point Approach: Ulam Stability Results of Functional Equation in Non-Archimedean Fuzzy φ-2-Normed Spaces and Non-Archimedean Banach Spaces
Abstract
:1. Introduction and Preliminaries
- (i)
- ;
- (ii)
- , ;
- (iii)
- (called as ultrametric).
- 1.
- A sequence in V is a Cauchy sequence if and only if converges to 0.
- 2.
- is called convergent if, for any , there is a integer in and satisfiesThen we called as v is a limit of the sequence and represented by .
- 3.
- If every Cauchy sequence in a non-Archimedean normed space V converges, it is called a non-Archimedean Banach space.
- (NAF1)
- ;
- (NAF2)
- , for all if and only if are linear dependent;
- (NAF3)
- for all , and ;
- (NAF4)
- ;
- (NAF5)
- is left continuous.
- (NAF6)
- , for all .
- (B1)
- , for all ,or
- (B2)
- there is satisfies
- (i)
- , for all ;
- (ii)
- is convergent to a fixed point of Φ;
- (iii)
- is the only one fixed point of Φ in the set ;
- (iv)
- , for all .
2. Solution
3. Ulam Stability Results in Non-Archimedean Fuzzy -2-Normed Spaces
3.1. Stability for the Even Case: Direct Method
3.2. Stability for the Even Case: Fixed Point Method
3.3. Stability for the Odd Case: Direct Method
3.4. Stability for the Odd Case: Fixed Point Method
4. Ulam Stability in Non-Archimedean Banach Spaces
4.1. Stability Results: Direct Method
4.2. Stability Results: Fixed Point Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulam, S.M. Problem in Modern Mathematics; Willey: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Bahyrycz, A. Hyperstability of some functional equation on restricted domain: Direct and fixed point methods. Bull. Iran. Math. Soc. 2016, 42, 959–974. [Google Scholar]
- Noori, B.; Moghimi, M.B.; Najati, A.; Park, C.; Lee, J.R. On superstability of exponential functional equations. J. Inequal. Appl. 2021, 2021, 76. [Google Scholar] [CrossRef]
- Ramdoss, M.; Pachaiyappan, D.; Park, C.; Lee, J.R. Stability of a generalized n-variable mixed-type functional equation in fuzzy modular spaces. J. Inequal. Appl. 2021, 2021, 61. [Google Scholar] [CrossRef]
- Eshaghi Gordji, M.; Khodaei, H.; Kamyar, M. Stability of Cauchy-Jensen type functional equation in generalized fuzzy normed spaces. Comput. Math. Appl. 2011, 62, 2950–2960. [Google Scholar] [CrossRef] [Green Version]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Jung, S.; Popa, D.; Rassias, M.T. On the stability of the linear functional equation in a single variable on complete metric spaces. J. Global Optim. 2014, 59, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Jung, S.; Rassias, M.T. Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation. J. Math. Inequal. 2018, 12, 43–61. [Google Scholar] [CrossRef] [Green Version]
- Khodaei, H.; Rassias, T.M. Set-valued dynamics related to generalized Euler-Lagrange functional equations. J. Fixed Point Theory Appl. 2018, 20, 32. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Alotaibi, A. Fuzzy stability of a cubic functional equation via fixed point technique. Adv. Difference Equ. 2012, 2021, 48. [Google Scholar] [CrossRef] [Green Version]
- Taghavi, A. On a functional equation for symmetric linear operators on C*-algebras. Bull. Iranian Math. Soc. 2016, 42, 1169–1177. [Google Scholar]
- Mohiuddine, S.A.; Alghamdi, M.A. Stability of functional equation obtained through a fixed-point alternative in intuitionistic fuzzy normed spaces. Adv. Difference Equ. 2012, 2012, 141. [Google Scholar] [CrossRef] [Green Version]
- Mohiuddine, S.A.; Şevli, H. Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space. J. Comput. Appl. Math. 2011, 235, 2137–2146. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Boo, D.; Rassias, T.M. Approximately additive mappings over p-adic fields. J. Chungcheong Math. Soc. 2008, 21, 1–14. [Google Scholar]
- Mohiuddine, S.A.; Lohani, Q.M.D. On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos Solitons Fractals 2009, 42, 1731–1737. [Google Scholar] [CrossRef]
- Mursaleen, M.; Mohiuddine, S.A.; Edely, O.H.H. On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces. Comput. Math. Appl. 2010, 59, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Hensel, K. Uber eine neue Begrundung der Theorie der algebraischen Zahlen. Jahresber. Der Dtsch.-Math.-Ver. 1897, 6, 83–88. [Google Scholar] [CrossRef]
- Eshaghi Gordji, M.; Savadkouhi, M.B. Stability of cubic and quartic functional equations in non-Archimedean spaces. Acta Appl. Math. 2010, 110, 1321–1329. [Google Scholar] [CrossRef] [Green Version]
- Eshaghi Gordji, M.; Savadkouhi, M.B. Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces. Appl. Math. Lett. 2010, 23, 1198–1202. [Google Scholar] [CrossRef] [Green Version]
- Narici, L.; Beckenstein, E. Strange terrain-non-Archimedean spaces. Am. Math. Mon. 1981, 88, 667–676. [Google Scholar]
- Vladimirov, V.S.; Volovich, I.V.; Zelenov, E.I. p-Adic Analysis and Mathematical Physics; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1994. [Google Scholar]
- Saadati, R.; Park, J. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2006, 27, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Cădariu, L.; Radu, V. Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 2003, 4, 4. [Google Scholar]
- Diaz, J.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Miheţ, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 2008, 343, 567–572. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamilvanan, K.; Alkhaldi, A.H.; Agarwal, R.P.; Alanazi, A.M. Fixed Point Approach: Ulam Stability Results of Functional Equation in Non-Archimedean Fuzzy φ-2-Normed Spaces and Non-Archimedean Banach Spaces. Mathematics 2023, 11, 270. https://doi.org/10.3390/math11020270
Tamilvanan K, Alkhaldi AH, Agarwal RP, Alanazi AM. Fixed Point Approach: Ulam Stability Results of Functional Equation in Non-Archimedean Fuzzy φ-2-Normed Spaces and Non-Archimedean Banach Spaces. Mathematics. 2023; 11(2):270. https://doi.org/10.3390/math11020270
Chicago/Turabian StyleTamilvanan, Kandhasamy, Ali H. Alkhaldi, Ravi P. Agarwal, and Abdulaziz M. Alanazi. 2023. "Fixed Point Approach: Ulam Stability Results of Functional Equation in Non-Archimedean Fuzzy φ-2-Normed Spaces and Non-Archimedean Banach Spaces" Mathematics 11, no. 2: 270. https://doi.org/10.3390/math11020270
APA StyleTamilvanan, K., Alkhaldi, A. H., Agarwal, R. P., & Alanazi, A. M. (2023). Fixed Point Approach: Ulam Stability Results of Functional Equation in Non-Archimedean Fuzzy φ-2-Normed Spaces and Non-Archimedean Banach Spaces. Mathematics, 11(2), 270. https://doi.org/10.3390/math11020270