Ulam Stability Results of Functional Equations in Modular Spaces and 2-Banach Spaces
Abstract
:1. Introduction
- (M1)
- (M2)
- for any scalar ϵ with
- (M3)
- for any scalars with
- ()
- for any scalars with
- (1)
- is ρ-convergent to a point , and we write if
- (2)
- is said to be ρ-Cauchy if for any one has for sufficiently large where is the set of natural numbers.
- (3)
- is called as a ρ-complete if any ρ-Cauchy sequence is ρ-convergent in .
- (1)
- if and c is a constant vector, then .
- (2)
- if and , then where and
2. Stability Results in Modular Spaces
2.1. Stability Results of Additive Functional Equation
2.2. Stability Results of Quartic Functional Equation
2.3. Stability Results of Quintic Functional Equation
3. Stability Results in 2-Banach Spaces
- (a)
- if and only if p and a are linearly dependent.
- (b)
- (c)
- (d)
3.1. Stability Results of Cauchy Additive Functional Equation
- (i)
- .
- (ii)
- for all .
3.2. Stability of Quartic Functional Equation
- (i)
- .
- (ii)
- for all .
4. Illustrative Examples
- (1)
- , for all , and .
- (2)
- , for all if the mapping χ is continuous.
- (1)
- , for all , and .
- (2)
- , for all if the mapping χ is continuous.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ulam, S.M. A Collection of Mathematical Problems; Interscience Tracts in Pure and Applied Mathematics, no. 8; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Nakano, H. Modulared Semi-Ordered Linear Spaces; Maruzen Co., Ltd.: Tokyo, Japan, 1950. [Google Scholar]
- Amemiya, I. On the representation of complemented modular lattices. J. Math. Soc. Japan 1957, 9, 263–279. [Google Scholar] [CrossRef]
- Koshi, S.; Shimogaki, T. On F-norms of quasi-modular spaces. J. Fac. Sci. Hokkaido Univ. Ser. I 1961, 15, 202–218. [Google Scholar] [CrossRef]
- Luxemburg, W.A.J. Banach Function Spaces. Ph.D. Thesis, Technische Hogeschool te Delft, Delft, The Netherlands, 1955. [Google Scholar]
- Mazur, B. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 1978, 1977, 33–186. [Google Scholar] [CrossRef]
- Musielak, J. Orlicz Spaces and Modular Spaces; Lecture Notes in Mathematics, 1034; Springer: Berlin/Heidelberg, 1983. [Google Scholar]
- Orlicz, W. Collected Papers. Part I, II; PWN—Polish Scientific Publishers: Warsaw, Poland, 1988. [Google Scholar]
- Turpin, P. Fubini inequalities and bounded multiplier property in generalized modular spaces. Comment. Math. 1978, 1, 331–353. [Google Scholar]
- Maligranda, L. Orlicz Spaces and Interpolation; Seminários de Matemática, 5; Universidade Estadual de Campinas, Departamento de Matemática, Campinas: Campinas, Brazil, 1989. [Google Scholar]
- Khamsi, M.A. Quasicontraction mappings in modular spaces without Δ2-condition. Fixed Point Theory Appl. 2008, 2008, 916187. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, G. A fixed point approach to stability of functional equations in modular spaces. Bull. Malays. Math. Sci. Soc. 2014, 37, 333–344. [Google Scholar]
- Park, C.; Bodaghi, A. Two multi-cubic functional equations and some results on the stability in modular spaces. J. Inequal. Appl. 2020, 2020, 6. [Google Scholar] [CrossRef]
- Kim, H.-M.; Shin, H.-Y. Refined stability of additive and quadratic functional equations in modular spaces. J. Inequal. Appl. 2017, 2017, 146. [Google Scholar] [CrossRef]
- Wongkum, K.; Chaipunya, P.; Kumam, P. On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without Δ2-conditions. J. Funct. Spaces 2015, 2015, 461719. [Google Scholar]
- Wongkum, K.; Kumam, P.; Chaipunya, Y. On the generalized Ulam-Hyers-Rassias stability for quartic functional equation in modular spaces. J. Nonlinear Sci. Appl. 2017, 10, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-M.; Chang, I.-S. Son, E. Stability of Cauchy additive functional equation in fuzzy Banach spaces. Math. Inequal. Appl. 2013, 16, 1123–1136. [Google Scholar]
- Ghler, S. 2-metrische Rume und ihre topologische struktur. Math. Nachr. 1963, 26, 115–148. [Google Scholar] [CrossRef]
- Ghler, S. Lineare 2-normierte Rumen. Math. Nachr. 1964, 28, 1–43. [Google Scholar] [CrossRef]
- Park, W.G. Approximate additive mappings in 2-Banach spaces and related topics. J. Math. Anal. Appl. 2011, 376, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Park, C. Additive functional inequalities in 2-Banach spaces. J. Inequal. Appl. 2013, 447, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gajda, Z. On stability of additive mappings. Internat. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Uthirasamy, N.; Tamilvanan, K.; Nashine, H.K.; George, R. Solution and Stability of quartic functional equations in modular spaces by using fatou property. J. Funct. Spaces. 2022, 2022, 5965628. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Tamilvanan, K.; Mursaleen, M.; Alotaibi, T. Stability of quartic functional equation in modular spaces via Hyers and fixed-point methods. Mathematics 2022, 10, 1938. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamilvanan, K.; Alkhaldi, A.H.; Jakhar, J.; Chugh, R.; Jakhar, J.; Rassias, J.M. Ulam Stability Results of Functional Equations in Modular Spaces and 2-Banach Spaces. Mathematics 2023, 11, 371. https://doi.org/10.3390/math11020371
Tamilvanan K, Alkhaldi AH, Jakhar J, Chugh R, Jakhar J, Rassias JM. Ulam Stability Results of Functional Equations in Modular Spaces and 2-Banach Spaces. Mathematics. 2023; 11(2):371. https://doi.org/10.3390/math11020371
Chicago/Turabian StyleTamilvanan, Kandhasamy, Ali H. Alkhaldi, Jyotsana Jakhar, Renu Chugh, Jagjeet Jakhar, and John Michael Rassias. 2023. "Ulam Stability Results of Functional Equations in Modular Spaces and 2-Banach Spaces" Mathematics 11, no. 2: 371. https://doi.org/10.3390/math11020371
APA StyleTamilvanan, K., Alkhaldi, A. H., Jakhar, J., Chugh, R., Jakhar, J., & Rassias, J. M. (2023). Ulam Stability Results of Functional Equations in Modular Spaces and 2-Banach Spaces. Mathematics, 11(2), 371. https://doi.org/10.3390/math11020371