Weighted Hardy–Rellich Inequality for Dunkl Operators
Abstract
:1. Introduction
2. Dunkl Operators
3. Hardy–Rellich Type Inequalities for Dunkl Operators
- (1)
- When ,
- (2)
- When ,
- If , we can rewrite asThus, if . Moreover, can be seen as a quadratic function of . SinceSo for any , i.e., for any . Thus, the inequality (8) holds.
- If , we can also have forMoreover, if or and . Computing directly we have
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardy, G.H. An inequality between integrals. Messenger Math. 1925, 54, 150–156. [Google Scholar]
- Balinsky, A.; Evans, W.D. Some recent results on Hardy-type inequalities. Appl. Math. Inf. Sci. 2020, 4, 191–208. [Google Scholar]
- Duy, N.T.; Lam, N.; Phi, L.L. Improved Hardy inequalities and weighted Hardy type inequalities with spherical derivatives. Rev. Mat. Complut. 2022, 35, 1–23. [Google Scholar] [CrossRef]
- Duy, N.T.; Lam, N.; Phi, L.L. A note on the second order geometric Rellich inequality on half-space. Monatsh. Math. 2021, 195, 233–248. [Google Scholar] [CrossRef]
- D’Ambrosio, L.; Dipierro, S. Hardy inequalities on Riemannian manifolds and applications. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis; Elsevier Masson: Amsterdam, The Netherlands, 2014; Volume 31, pp. 449–475. [Google Scholar]
- Davies, E.B. The Hardy constant. Q. J. Math. Oxf. 1995, 46, 417–431. [Google Scholar] [CrossRef]
- Goldstein, J.A.; Kombe, I. The Hardy inequality and nonlinear parabolic equations on Carnot groups. Nonlinear Anal. 2008, 69, 4643–4653. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y. Hardy-type inequalities on the H-type groups and anisotropic Heisenberg groups. Chin. Math. Ann. B 2008, 29, 567–574. [Google Scholar] [CrossRef]
- Jin, Y.; Han, Y. Weighted Rellich inequality on H-Type Groups and Nonisotropic Heisenberg Groups. J. Inequal. Appl. 2010, 2010, 158281. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Shen, S. Weighted Hardy and Rellich inequality on Carnot groups. Arch. Math. 2011, 96, 263–271. [Google Scholar] [CrossRef]
- Marcus, M.; Mizel, V.; Pinchover, Y. On the best constant for Hardy’s inequality in Rn. Trans. America Math. Soc. 1998, 350, 3237–3255. [Google Scholar] [CrossRef]
- Opic, B.; Kufner, A. Hardy-type inequalities. In Pitman Research Notes in Mathematics; Longman: Harlow, UK, 1990; Volume 219. [Google Scholar]
- Davies, E.B.; Hinz, A.M. Explicit constants for Rellich inequalities in Lp(Ω). Math. Z. 1998, 227, 511–523. [Google Scholar] [CrossRef]
- Tertikas, A.; Zographopoulos, N. Best constant in the Hardy–Rellich inequalities and related improvenments. Adv. Math. 2007, 209, 407–459. [Google Scholar] [CrossRef] [Green Version]
- Cazacu, C. A new proof of the Hardy–Rellich inequality in any dimension. Proc. Roy. Soc. Edinburgh Sect. A 2020, 150, 2894–2904. [Google Scholar] [CrossRef] [Green Version]
- Cassano, B.; Cossetti, L.; Fanelli, L. Improved Hardy–Rellich inequalities. Commun. Pure Appl. Anal. 2022, 21, 867–889. [Google Scholar] [CrossRef]
- Anoop, V.P.; Parui, S. The Hardy inequality and fractional Hardy inequality for the Dunkl Laplacian. Israel J. Math. 2020, 236, 247–278. [Google Scholar] [CrossRef]
- Tang, L.; Chen, H.; Shen, S.; Jin, Y. Hardy–Rellich Type inequalities associated with Dunkl Operators. Chin. Ann. Math. Ser. B 2022, 43, 281–294. [Google Scholar] [CrossRef]
- Velicu, A. Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities. Commun. Contemp. Math. 2020, 23, 2050024. [Google Scholar] [CrossRef]
- Velicu, A. Sobolev-Type Inequalities for Dunkl Operators. J. Funct. Anal. 2020, 279, 108695. [Google Scholar] [CrossRef]
- Dai, F.; Xu, Y. Analysis on h-harmonics and Dunkl transforms. In Advanced Courses in Mathematics; Tikhonov, S., Ed.; Birkhäuser: Basel, Switzerland, 2015. [Google Scholar]
- Rösler, M. Dunkl operators: Theory and applications. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2002; Volume 1817, pp. 93–135. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, J.; Jin, Y.; Shen, S.; Tang, L. Weighted Hardy–Rellich Inequality for Dunkl Operators. Mathematics 2023, 11, 1487. https://doi.org/10.3390/math11061487
Lyu J, Jin Y, Shen S, Tang L. Weighted Hardy–Rellich Inequality for Dunkl Operators. Mathematics. 2023; 11(6):1487. https://doi.org/10.3390/math11061487
Chicago/Turabian StyleLyu, Jielin, Yongyang Jin, Shoufeng Shen, and Li Tang. 2023. "Weighted Hardy–Rellich Inequality for Dunkl Operators" Mathematics 11, no. 6: 1487. https://doi.org/10.3390/math11061487
APA StyleLyu, J., Jin, Y., Shen, S., & Tang, L. (2023). Weighted Hardy–Rellich Inequality for Dunkl Operators. Mathematics, 11(6), 1487. https://doi.org/10.3390/math11061487