Integral Inequalities Involving Strictly Monotone Functions
Abstract
:1. Introduction
- : The set of positive integers.
- , .
- means that is , and
2. The Proofs
3. Some Special Cases
4. An Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bellman, R.; Cooke, K.L. Differential-Difference Equations; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Mitrinović, D.S.; Vasic, P.M. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970; Volume 61. [Google Scholar]
- Barza, S.; Persson, L.E.; Soria, J. Sharp weighted multidimensional integral inequalities of Chebyshev type. J. Math. Anal. Appl. 1999, 236, 243–253. [Google Scholar] [CrossRef]
- Bergh, J.; Burenkov, V.I.; Persson, L.E. On some sharp reversed Hölder and Hardy type inequalities. Math. Nachr. 1994, 169, 19–29. [Google Scholar] [CrossRef]
- Bergh, J.; Burenkov, V.I.; Persson, L.E. Best constants in reversed Hardy’s inequalities for quasimonotone functions. Acta Sci. Math. 1994, 59, 221–239. [Google Scholar]
- Barza, S.; Pecarić, J.; Persson, L.E. Reversed Hölder type inequalities for monotone functions of several variables. Math. Nachr. 1997, 186, 67–80. [Google Scholar] [CrossRef]
- Benguria, R.D.; Depassier, C. A reversed Poincaré inequality for monotone functions. J. Inequal. Appl. 2000, 5, 91–96. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some integral inequalities for operator monotonic functions on Hilbert spaces. Spec. Math. 2020, 8, 172–180. [Google Scholar] [CrossRef]
- Mond, B.; Pecarić, J.; Peric, I. On reverse integral mean inequalities. Houst. J. Math. 2006, 32, 167–181. [Google Scholar]
- Chandra, J.; Fleishman, B.A. On a generalization of the Gronwall-Bellman lemma in partially ordered Banach spaces. J. Math. Anal. Appl. 1970, 31, 668–681. [Google Scholar] [CrossRef]
- Gogatishvili, A.; Stepanov, V.D. Reduction theorems for weighted integral inequalities on the cone of monotone functions. Russ. Math. Surv. 2013, 68, 597–664. [Google Scholar] [CrossRef]
- Rahman, G.; Aldosary, S.F.; Samraiz, M.; Nisar, K.S. Some double generalized weighted fractional integral inequalities associated with monotone Chebyshev functionals. Fractal Fract. 2021, 5, 275. [Google Scholar] [CrossRef]
- Heinig, H.; Maligranda, L. Weighted inequalities for monotone and concave functions. Stud. Math. 1995, 116, 133–165. [Google Scholar]
- Qi, F.; Cui, L.-H.; Xu, S.-L. Some inequalities constructed by Tchebysheff’s integral inequality. Math. Inequal. Appl. 1999, 2, 517–528. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Adamović, D.D. Sur une inégalité élementaire où interviennent des fonctions trigonométriques. Univ. Beogr. Publ. Elektrotehnickog Fak. Ser. Mat. Fiz. 1965, 149, 23–34. [Google Scholar]
- Lazarevic, I. Neke nejednakosti sa hiperbolickim funkcijama. Univ. Beogr. Publ. Elektrotehnickog Fak. Ser. Mat. Fiz. 1966, 170, 41–48. [Google Scholar]
- Neuman, E.; Sáandor, J. On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities. Math. Inequal. Appl. 2010, 13, 715–723. [Google Scholar] [CrossRef]
- Qian, G.; Chen, X.D. Improved bounds of Mitrinović-Adamović-type inequalities by using two-parameter functions. J. Inequal. Appl. 2023, 2023, 25. [Google Scholar] [CrossRef]
- Nishizawa, Y. Sharp exponential approximate inequalities for trigonometric functions. Results Math. 2017, 71, 609–621. [Google Scholar] [CrossRef]
- Zhu, L.; Nenezic, M. New approximation inequalities for circular functions. J. Inequalities Appl. 2018, 2018, 313. [Google Scholar] [CrossRef]
- Nishizawa, Y. Sharpening of Jordan’s type and Shafer-Fink’s type inequalities with exponential approximations. Appl. Math. Comput 2015, 269, 146–154. [Google Scholar] [CrossRef]
- Bhayo, B.A.; Sandor, J. On Jordan’s, Redheffer’s and Wilker’ inequality. Math. Inequal. Appl. 2016, 19, 823–839. [Google Scholar] [CrossRef]
- Stojiljković, V.; Radojević, S.; Cetin, E.; Cavić, V.S.; Radenović, S. Sharp bounds for trigonometric and hyperbolic functions with application to fractional calculus. Symmetry 2022, 14, 1260. [Google Scholar] [CrossRef]
- Thool, S.B.; Bagul, Y.J.; Dhaigude, R.M.; Chesneau, C. Bounds for quotients of inverse trigonometric and inverse hyperbolic functions. Axioms 2022, 11, 262. [Google Scholar] [CrossRef]
- Mortici, C.; Srivastava, H.M. Estimates for the arctangent function related to Shafer’s inequality. Colloq. Math. 2014, 136, 263–270. [Google Scholar] [CrossRef]
- Agarwal, P.; Jleli, M.; Samet, B. Fixed Point Theory in Metric Spaces: Recent Advances and Applications; Springer: Berlin, Germany, 2018. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jleli, M.; Samet, B. Integral Inequalities Involving Strictly Monotone Functions. Mathematics 2023, 11, 1873. https://doi.org/10.3390/math11081873
Jleli M, Samet B. Integral Inequalities Involving Strictly Monotone Functions. Mathematics. 2023; 11(8):1873. https://doi.org/10.3390/math11081873
Chicago/Turabian StyleJleli, Mohamed, and Bessem Samet. 2023. "Integral Inequalities Involving Strictly Monotone Functions" Mathematics 11, no. 8: 1873. https://doi.org/10.3390/math11081873
APA StyleJleli, M., & Samet, B. (2023). Integral Inequalities Involving Strictly Monotone Functions. Mathematics, 11(8), 1873. https://doi.org/10.3390/math11081873