Neural Networks Simulation of Distributed SEIR System †
Abstract
:1. Introduction
2. The Optimal Control Problem
3. Discretization of the Distributed Optimal Control Problem
4. Adaptive Critic Neural Network for a Distributed Optimal Control Problem with Control and State Constraints
Algorithm 1: Algorithm for Solving the Optimal Control Problem | |||||||||
Input: Select - number of steps, time and space steps - stopping tolerance for action and critic neural networks, respectively, - initial values. | |||||||||
Output: Set of final approximate optimal control and optimal trajectory , | |||||||||
1 | Set the initial weight for to do | ||||||||
2 | for to do | ||||||||
3 | while and do | ||||||||
4 | for to do | ||||||||
5 | Compute and using action () and critic () networks, and by (10) | ||||||||
6 | Compute using (12) and (14) | ||||||||
7 | if then | ||||||||
8 | with | ||||||||
9 | |||||||||
10 | |||||||||
11 | With data set update weight parameters | ||||||||
12 | With data set update weight parameters | ||||||||
13 | Set | ||||||||
14 | Set | ||||||||
15 | Compute using (10) and | ||||||||
16 | |||||||||
17 | return |
5. SEIR Model with Spatial Diffusions
Distributed Optimal Control Problem of Spread of Diseases
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; He, H. Adaptive critic designs for optimal control of uncertain nonlinear systems with unmatched interconnections. Neural Netw. 2018, 105, 42–153. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Chen, Y.; Yin, Z. Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 620–629. [Google Scholar] [CrossRef]
- He, W.; Dong, Y.; Sun, C. Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 334–344. [Google Scholar] [CrossRef]
- He, W.; Ge, S.S. Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 2016, 66, 146–154. [Google Scholar] [CrossRef]
- Marino, R. Adaptive control of nonlinear systems: Basic results and applications. Annu. Rev. Control 1997, 21, 55–66. [Google Scholar] [CrossRef]
- Wang, D.; Liu, D.; Wei, Q.; Zhao, D.; Jin, N. Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming. Automatica 2012, 48, 1825–1832. [Google Scholar] [CrossRef]
- Kmet, T.; Kmetova, M. Neural network solution of distributed control problems with control and state constraints. In LNCS 9886 Artificial Neural Networks and Machine Learning—ICANN2016; Villa, A., Masulli, P., Rivero, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 468–477. [Google Scholar]
- Kmet, T.; Kmetova, M. Adaptive critic design and Hopfield neural network based simulation of time delayed photosynthetic production and prey-predator model. Inf. Sci. 2015, 294, 586–599. [Google Scholar] [CrossRef]
- Kmet, T.; Kmetova, M. Neural networks simulation of feeding adaptations of daphnia. In LNCS 9702 Algorithms for Computational Biology AlCoB 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 26–37. [Google Scholar]
- Kmet, T.; Kmetova, M. Echo State Networks Simulation of SIR Distributed Control. In LNAI 10245 Artificial Intelligence and Soft Computing ICAISC 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 86–96. [Google Scholar]
- Borzi, A. Multigrid methods for parabolic distributed optimal control problems. J. Comput. Appl. Math. 2003, 157, 365–382. [Google Scholar] [CrossRef]
- Mittelmann, H.D. Solving elliptic control problems with interior point and SQP methods: Control and state constraints. J. Comput. Appl. Math. 2000, 120, 175–195. [Google Scholar] [CrossRef]
- Liu, D.; Wang, D.; Yang, X. An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs. Inf. Sci. 2013, 220, 331–342. [Google Scholar] [CrossRef]
- Prokhorov, D.V.; Wunsch, D.C. Adaptive critic designs. IEEE Trans. Neural Netw. 1997, 8, 997–1007. [Google Scholar] [CrossRef]
- Vamvoudakis, K.G.; Lewis, F.L. Online actor–critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica 2010, 46, 878–888. [Google Scholar] [CrossRef]
- Levin, A.U.; Narendra, K.S. Control of nonlinear dynamic systems using neural networks: Controllability and stabilization adaptive critic designs. IEEE Trans. Neural Netw. 1993, 4, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Werbos, P.J. A menu of designs for reinforcement learning over time. In Neural Networks for Control; The MIT Press: Cambridge, MA, USA, 1990; pp. 333–366. [Google Scholar]
- Werbos, P.J. Approximate dynamic programming for real-time control and neural modelling. In Handbook of Intelligent Control: Neural Fuzzy, and Adaptive Approaches; White, D.A., Sofge, D.A., Eds.; Van Nostrand: New York, NY, USA, 1992; Chapter 13. [Google Scholar]
- Hornik, M.; Stichcombe, M.; White, H. Multilayer feed forward networks are universal approximators. Neural Netw. 1989, 2, 259–366. [Google Scholar] [CrossRef]
- Chryssoverghi, I. Discretization methods for semilinear parabolic optimal control problems. Int. J. Numer. Anal. Model. 2006, 3, 437–458. [Google Scholar]
- Clever, D.; Lang, J.; Ulbrich, S.; Ziems, J.C. Combination of an Adaptive Multilevel SQP Method and a Space-Time Adaptive PDAE Solver for Optimal Control Problems. Procedia Comput. Sci. 2012, 1, 1435–1443. [Google Scholar] [CrossRef]
- Knowles, G. Finite element approximation of parabolic time optimal control problems. SIAM J. Control Optim. 1982, 20, 414–427. [Google Scholar] [CrossRef]
- Buskens, C.; Maurer, H. SQP-methods for solving optimal control problems with control and state constraints: Adjoint variable, sensitivity analysis and real-time control. J. Comput. Appl. Math. 2000, 120, 85–108. [Google Scholar] [CrossRef]
- Gollman, L.; Kern, D.; Mauer, H. Optimal control problem with delays in state and control variables subject to mixed control-state constraints. Optim. Control Appl. Meth. 2009, 30, 341–365. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, Q.; Zhang, H.; Cui, L. Adaptive critic design-based robust neural network control for nonlinear distributed parameter systems with unknown dynamics. Neurocomputing 2015, 148, 200–208. [Google Scholar] [CrossRef]
- Padhi, R.; Balakrishnan, S.; Randoltph, T. A single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems. Neural Netw. 2006, 19, 1648–1660. [Google Scholar] [CrossRef] [PubMed]
- Padhi, R.; Unnikrishnan, N.; Wang, X.; Balakrishnan, S.N. Adaptive-critic based optimal control synthesis for distributed parameter systems. Automatica 2001, 37, 1223–1234. [Google Scholar] [CrossRef]
- Caas, E. Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 1997, 35, 1297–1327. [Google Scholar] [CrossRef]
- Kirk, D.E. Optimal Control Theory: An Introduction; Dover Publications Inc.: Mineola, NY, USA, 1989. [Google Scholar]
- Potryagin, D.E. The Mathematical Theory of Optimal Process; Nauka: Moscow, Russia, 1983. [Google Scholar]
- Polak, E. Optimization Algorithms and Consistent Approximation; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Gnecco, G. A Comparison between Fixed-Basis and Variable-Basis Schemes for Function Approximation and Functional Optimization. J. Appl. Math. 2012, 2012, 806945. [Google Scholar] [CrossRef]
- Werbos, P. Advanced Forecasting Methods for Global Crisis Warning and Models of Intelligence; General Systems Yearbook; 1977. Available online: https://www.researchgate.net/publication/243634290_Advanced_Forecasting_Methods_for_Global_Crisis_Warning_and_Models_of_Intelligence#fullTextFileContent (accessed on 1 March 2023).
- Venayagamoorthy, G.K.; Wunsch, D.C.; Harley, R.G. Adaptive critic based neurocontroller for turbogenerators with global dual heuristic programming. In Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077), Singapore, 23–27 January 2000; pp. 291–294. [Google Scholar]
- Rumelhart, D.F.; Hinton, G.E.; Wiliams, R.J. Learning internal representation by error propagation. In Parallel Distributed Processing: Foundation; Rumelhart, D.E., McClelland, D.E., Group, P.R., Eds.; The MIT Press: Cambridge, MA, USA, 1987; Volume 1, pp. 318–362. [Google Scholar]
- Aron, J.L.; Schwartz, I.B. Seasonality and period-doubling bifurcations in an epidemic model. J. Theor. Biol. 1984, 110, 665–679. [Google Scholar] [CrossRef]
- Holko, A.; Medrek, M.; Pastuszak, Z.; Phusavat, K. Epidemiological modeling with a population density map-based cellular automata simulation system. Expert Syst. Appl. 2016, 48, 1–8. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, Y.; Ye, Y. Complex dynamics and control strategies of SEIR heterogeneous network model with saturated treatment. Phys. A 2022, 608, 128287. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, W. Analysis of SEIR epidemic patch model with nonlinear incidence rate, vaccination and quarantine strategies. Math. Comput. Simul. 2022, 200, 489–503. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q. Near-optimal control of a stochastic partial differential equation SEIR epidemic model under economic constraints. Eur. J. Control 2023, 69, 100757. [Google Scholar] [CrossRef]
- Kar, T.K.; Batabyal, A. Stability analysis and optimal control of an SIR epidemic model with vaccination. BioSystems 2011, 104, 127–135. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kmet, T.; Kmetova, M.; Végh, L. Neural Networks Simulation of Distributed SEIR System. Mathematics 2023, 11, 2113. https://doi.org/10.3390/math11092113
Kmet T, Kmetova M, Végh L. Neural Networks Simulation of Distributed SEIR System. Mathematics. 2023; 11(9):2113. https://doi.org/10.3390/math11092113
Chicago/Turabian StyleKmet, Tibor, Maria Kmetova, and Ladislav Végh. 2023. "Neural Networks Simulation of Distributed SEIR System" Mathematics 11, no. 9: 2113. https://doi.org/10.3390/math11092113
APA StyleKmet, T., Kmetova, M., & Végh, L. (2023). Neural Networks Simulation of Distributed SEIR System. Mathematics, 11(9), 2113. https://doi.org/10.3390/math11092113