Parameter Prediction with Novel Enhanced Wagner Hagras Interval Type-3 Takagi–Sugeno–Kang Fuzzy System with Type-1 Non-Singleton Inputs
Abstract
:1. Introduction
- By the math model used in the consequent section [47,48,49]: (a) Mamdani, with a single value , or interval value , (b) Takagi–Sugeno–Kang (TSK), a linear function of inputs , where is a numerical value of the rule , and (c) Takagi–Sugeno (TS), with a nonlinear function of the state space , where is the state vector, is the system matrix, is the input matrix, and is the input vector at time .
- By the type of input value [49]: (a) singleton (S), modeled as crisp numbers, (b) type-1 non-singleton (NS-1), modeled as type-1 fuzzy numbers, and (c) type-2 non-singleton (NS-2), modeled as type-2 fuzzy numbers.
- By the math model used as a secondary membership function [47,48,49]: (a) interval (I), with a fixed value of 1 as secondary MF, Figure 1, (b) Wagner–Hagras (WH) general type-2 (GT2), with a single triangular or Gaussian secondary MF, Figure 2 and Figure 3, and (c) WH type-3 (WH T3), with a double triangular or Gaussian secondary MF, Figure 4.
- IT3 Mamdani NSFLS-1 and NSFLS-2 fuzzy models:In [47], the authors presented an IT3 Mamdani NSFLS-2 system, while in [48] they presented an IT3 Mamdani NSFLS-1. In both cases the application was to forecast the head end transfer bar temperature in the entry zone of a hot strip mill, updating the antecedent and consequent parameters using the backpropagation learning algorithm.
- IT3 Mamdani SFLS model:In [54], a fractional order learning algorithm is used to update the centroid parameters for IT3 Mamdani SFLS. The maximum correntropy Kalman filter and the maximum correntropy unscented Kalman filter with the proposed adaptive fuzzy kernel size are presented in [55] to optimize both the rule and the antecedent parameters. An adaptive IT3 Mamdani SFLS employing deep reinforcement learning is presented in [56] for efficient voltage stabilization of a 5G telecommunication power system that supplies constant power loads with negative impedance instabilities. In [57], the authors applied a learning strategy based on a correntropy unscented Kalman filter with a fuzzy kernel size to an IT3 SFLS to optimize the balanced closed-loop voltages of direct current microgrids. In [58], an IT3 Mamdani NSFLS is used to simulate the synchronization with the leader of a slave chaotic financial system, using a specific control law. A new machine learning technique for solving multi-pantograph singular differential equations is presented in [59]. In [60], the performance-emissions of a single-cylinder compression ignition engine with diesel hydrogen dual fuel is predicted. A fuzzy-based spherical IT3 SFLS system is used to estimate the desired outputs, including nitrogen oxides, total unburned hydrocarbons, thermal breakdown efficiency, and soot. Extended and unscented Kalman filters are proposed to optimize IT3 FLS parameters. In [61], the performance-emissions of a single-cylinder compression ignition engine with diesel hydrogen dual fuel were predicted.
- IT3 Mamdani NSFLS model:In [62], the authors present an IT3 Mamdani NSFLS system for forecasting COVID-19 cases, which does not require learning from training input and output data. In [63], an IT3 Mandami NSFLS is modeled using first-order dynamic factional order fuzzy systems and applied to model the brushless DC motor. In [64], the authors use the correntropy Kalman filter to update the consequent parameters and the maximum correntropy unscented Kalman filter to update the antecedent parameters of the IT3 Mamdani NSFLS. In [65], two IT3 Mandami NFLS are used to model uncertainties and predict tracking error using fractional order calculation for gyroscopes of microelectromechanical systems. In [66], the unscented Kalman filter with gradient descent method is used to update the consequent and antecedent parameters of an IT3 Mamdani NSFLS applied to predict CO2 solubility as a function of temperature, sodium chloride molality, and the pressure. The authors of [67] use the gradient descent method to learn on an IT3 Mamdani NSFLS-1 predictor. In [68], the IT3 Mamdani NSFLS is updated using proportional adaptation rules and applied to control an autonomous vehicle.
- IT3 TS SFLS model:In [69], the authors present a novel method based on IT3 TS fuzzy logic systems and an online learning approach designed for energy control and battery charging planning for hybrid photovoltaic battery systems and proposed a specific control law for tunning. In [70], a fuzzy IT3 TS system is proposed to model the behavior of a photovoltaic panel as the single-diode approach using the online fractional order learning algorithm to optimize the consequent parameters of the proposed IT3 system. In [71], the authors presented an aircraft-related application of the IT3 TS SFLS fuzzy system for nonlinear aerodynamic modeling from recorded flight data, using trial and error and manual tuning of various constants to adjust antecedent and consequent parameters. In [72,73], the design for the construction of the IT2 TS SFLS uses the type-2 modified interval fuzzy c-regression model clustering algorithm and the hyperplane shape membership function.
- A novel mathematical formulation of the backpropagation (BP) learning algorithm to train and tune the antecedent and consequent parameters of the novel EWH IT3 TSK NSFLS-1 fuzzy logic system.
- A more accurate and economical method for estimating the final value of the output , which uses the average as a measure of central tendency, named as the enhanced EWH method, instead of assigning ascending weights at each level of the alphas, as in the classical WH method.
- A novel method which dynamically constructs the EWH IT3 TSK NSFLS-1 system with a temporal structure, which estimates the parameters of the antecedent and consequent sections of each rule at each level-, with , updating only the parameters of the level-, or IT2 used as the base to construct the levels-, . According to the state-of-the-art literature there are no publications using this methodology.
- A new initialization procedure for the fuzzy rule base of the level-, IT2 fuzzy system where the initialization of the consequent parameters with expert knowledge is not required. This proposal initializes the parameters of the consequent section of TSK as zero, both the center = 0, and the spread = 0.
2. Materials and Methods
2.1. The Novel EWH IT3 TSK NSFLS-1 Fuzzy System
2.2. Input Variables
2.3. Membership Functions
2.4. Fuzzy Rule Base
2.5. Firing Intervals
2.6. TSK Consequent Parameters
2.7. Level- Expansion
2.8. Calculation
2.9. The BP Method for Parameters Tuning
2.10. The Convergence Analysis
3. Test Application Statement: Industrial Process Description
3.1. Robotic GMAW Critical Variables Prediction
3.1.1. Experimental Test Bed
3.1.2. Data Collection and Model Parameters
3.2. HSM Transfer Bar Surface Temperature Prediction
4. Experimental and Modeling Results
4.1. Robotic GMAW Critical Variables Prediction
4.1.1. Input–Output Data Pairs for Training
4.1.2. The Fuzzy Rule Bases
4.1.3. Input–Output Data Pairs for Testing
4.1.4. Experimental Results and Discussion
4.2. HSM Transfer Bar Surface Temperature Prediction
4.2.1. Input–Output Data Pairs
4.2.2. Antecedent Membership Functions
4.2.3. Fuzzy Rule Base
4.2.4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Anastasakis, V.; Mort, N. Prediction of the GSP-USD exchange rate using statistical and neural network models. In Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Benalmádena, Spain, 8–10 September 2003. [Google Scholar]
- Hernandez, M.A.; Mendez, G.M. Modeling and prediction of the MXN-USA exchange rate using interval singleton type-2 fuzzy logic systems. In Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 16–21 July 2006. [Google Scholar]
- Lendasse, A.; de Boot, E.; Wertz, V.; Verleysen, V.M. Non-linear financial time series forecasting: Application to the bel 20 stock market index. Eur. J. Econ. Soc. Syst. 2000, 14, 81–91. [Google Scholar] [CrossRef]
- Thangavel, B.; Srinivasan, S.; Kathamuthu, T.; Zhai, G.; Gunasekaran, N. Dynamical Analysis of T–S Fuzzy Financial Systems: A Sampled-Data Control Approach. Int. J. Fuzzy Syst. 2022, 24, 1944–1957. [Google Scholar] [CrossRef]
- Xu, A.; Tian, M.W.; Kausar, N.; Mohammadzadeh, A.; Pamucar, D.; Ozbilge, E. Optimal type-3 fuzzy control and analysis of complicated financial systems. J. Intell. Fuzzy Syst. 2023, 44, 7121–7134. [Google Scholar] [CrossRef]
- Mendez, M.; Cavazos, A.; Leduc, L.; Soto, R. Hot strip mill temperature prediction using hybrid learning interval singleton type-2 FLS. In Proceedings of the IASTED International Conference on Modeling and Simulation, Artificial Intelligence and Applications, Palm Springs, CA, USA, 24–26 February 2003. [Google Scholar]
- Mendez, M.; Cavazos, A.; Leduc, L.; Soto, R. Modeling of a hot strip mill temperature using hybrid learning for interval type-1 and type-2 non-singleton type-2 fuzzy logic systems. In Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Benalmádena, Spain, 8–10 September 2003. [Google Scholar]
- Mendez, G.M.; Leduc-Lezama, L.; Colas, R.; Murillo-Perez, G.; Ramirez-Cuellar, J.; Lopez, J.J. Modelling and control of coiling entry temperature using interval type-2 fuzzy logic systems. Ironmak. Steelmak. 2010, 37, 126–134. [Google Scholar] [CrossRef]
- Biglarbegian, M.; Melek, W.W.; Mendel, J.M. Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: Theory and experiments. IEEE Trans. Ind. Electron. 2011, 58, 1371–1384. [Google Scholar] [CrossRef]
- Hagras, H.A. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 2004, 12, 524–539. [Google Scholar] [CrossRef]
- Martinez, R.; Castillo, O.; Aguilar, L.T. Optimization of interval type-2 fuzzy logic controller for a perturbed autonomous wheeled mobile robot using genetic algorithm. Inf. Sci. 2009, 179, 2158–2174. [Google Scholar] [CrossRef]
- Sahab, N.; Hagras, H. Adaptive non-singleton type-2 fuzzy logic systems: A way forward for handling numerical uncertainties in real world applications. Int. J. Comput. Commun. 2011, 6, 503–529. [Google Scholar] [CrossRef]
- Amador-Angulo, L.; Castillo, O.; Melin, P.; Castro, J.R. Interval type-3 fuzzy adaptation of the bee colony optimization algorithm for optimal fuzzy control of an autonomous mobile robot. Micromachines 2022, 13, 1490. [Google Scholar] [CrossRef]
- Biglarbegian, M.; Melek, W.W.; Mendel, J.M. On the robustness of type-1 and interval type-2 fuzzy logic systems in modeling. Inf. Sci. 2011, 81, 1325–1347. [Google Scholar] [CrossRef]
- Hameed, I.A. Simplified architecture of a type-2 fuzzy controller using four embedded type-1 fuzzy controllers and its applications to a greenhouse climate control system. Int. J. Syst. Control Eng. 2009, 223, 619–631. [Google Scholar] [CrossRef]
- Hsiao, M.Y.; Li, T.H.; Lee, J.Z.; Chao, C.H.; Tsai, S.H. Design of interval type-2 fuzzy sliding-mode controller. Inf. Sci. 2008, 178, 1696–1716. [Google Scholar] [CrossRef]
- Knychas, S.; Szabat, K. Adaptive speed control of drive system with 2-type neuro fuzzy controller. Prz. Elektrotechniczny 2011, 87, 160–163. [Google Scholar]
- Linda, O.; Manic, M. Interval type-2 fuzzy voter design for fault tolerant systems. Inf. Sci. 2011, 181, 2933–2950. [Google Scholar] [CrossRef]
- Mohammadi, S.M.A.; Gharaveisi, A.A.; Mashinchi, M.; Vaezi-Nejad, S.M. An evolutionary tuning technique for type-2 fuzzy logic controller. Trans. Inst. Meas. Control 2011, 33, 223–245. [Google Scholar] [CrossRef]
- Pan, Y.P.; Er, M.J.; Huang, D.P.; Wang, Q.R. Fire-rule-based direct adaptive type-2 fuzzy H(infinity) tracking control. Eng. Appl. Artif. Intell. 2011, 24, 1174–1185. [Google Scholar] [CrossRef]
- Sepulveda, R.; Castillo, O.; Melin, P.; Montiel, O. An efficient computational method to implement type-2 fuzzy logic in control applications. In Analysis and Design of Intelligent Systems Using Soft Computing Techniques; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Sierra, G.K.; Bulla, J.O.; Melgarejo, M.A. An embedded type-2 fuzzy processor for the inverted pendulum control problem. IEEE Lat. Am. Trans. 2011, 9, 263–269. [Google Scholar]
- Wu, D.R.; Mendel, J.M. On the continuity of type-1and type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 2011, 19, 179–192. [Google Scholar]
- Zhang, X.X.; Li, H.X.; Qi, C.K. Spatially constrained fuzzy-clustering-based sensor placement for spatiotemporal fuzzy-control system. IEEE Trans. Fuzzy Syst. 2010, 18, 946–957. [Google Scholar] [CrossRef]
- Dumitrescu, C.; Ciotirnae, P.; Vizitiu, C. Fuzzy logic for intelligent control system using soft computing applications. Sensors 2021, 21, 2617. [Google Scholar] [CrossRef] [PubMed]
- Vassilyev, S.N.; Kudinov, Y.I.; Pashchenko, F.F.; Durgaryan, I.S.; Kelina, A.Y.; Kudinov, I.Y.; Pashchenko, A.F. Intelligent control systems and fuzzy controllers. I. fuzzy models, logical-linguistic and analytical regulators. Autom. Remote Control 2020, 81, 171–191. [Google Scholar] [CrossRef]
- Koohathongsumrit, N.; Meethom, W. An integrated approach of fuzzy risk assessment model and data envelopment analysis for route selection in multimodal transportation networks. Expert Syst. Appl. 2021, 171, 114342. [Google Scholar] [CrossRef]
- Kaushik, A.; Bali, R.S.; Srivastava, G. A fuzzy optimized route selection framework for autonomous vehicles using V-NDN. In Proceedings of the IEEE International Conference on Big Data, Sorrento, Italy, 15 December 2023. [Google Scholar]
- Aliev, R.A.; Pedrycz, W.; Guirimov, B.G.; Aliev, R.R.; Ilhan, U.; Babagil, M.; Mammadli, S. Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization. Inf. Sci. 2011, 181, 1591–1608. [Google Scholar] [CrossRef]
- Akhmedova, S.; Stanovov, V.; Kamiya, Y. A Hybrid Clustering Approach Based on Fuzzy Logic and Evolutionary Computation for Anomaly Detection. Algorithms 2022, 15, 342. [Google Scholar] [CrossRef]
- Acosta, H.; Wu, D.R.; Forrest, B.M. Fuzzy experts on recreational vessels, a risk modeling approach for marine invasions. Ecol. Model. 2010, 221, 850–863. [Google Scholar] [CrossRef]
- Khan, M.N.U.; Tang, Z.; Cao, W.; Abid, Y.A.; Pan, W.; Ullah, A. Fuzzy-based efficient healthcare data collection and analysis mechanism using edge nodes in the IoMT. Sensors 2023, 23, 7799. [Google Scholar] [CrossRef]
- Lee, C.S.; Wang, M.H.; Hagras, H. Type-2 fuzzy ontology and its application to personal diabetic-diet recommendation. IEEE Trans. Fuzzy Syst. 2010, 18, 316–328. [Google Scholar] [CrossRef]
- Melin, P.; Mendoza, O.; Castillo, O. An improved method for edge detection based on interval type-2 fuzzy logic. Expert Syst. Appl. 2010, 37, 8527–8535. [Google Scholar] [CrossRef]
- Al-Faris, M.; Chiverton, J.; Ndzi, D.; Ahmed, A.I. Vision based dynamic thermal comfort control using fuzzy logic and deep learning. Appl. Sci. 2021, 11, 4626. [Google Scholar] [CrossRef]
- Melin, P.; Mendoza, O.; Castillo, O. Face recognition with an improved interval type-2 fuzzy logic Sugeno integral and modular networks. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2011, 41, 1001–1012. [Google Scholar] [CrossRef]
- Pedrycz, W. The development of granular meta structures and their use in a multifaceted representation of data and models. Kybernetes 2010, 39, 1184–1200. [Google Scholar] [CrossRef]
- Ali, I.; Li, Y.; Pedrycz, W. Granular computing approach to evaluate spatio-temporal events in intuitionistic fuzzy sets data through formal concept analysis. Axioms 2023, 12, 407. [Google Scholar] [CrossRef]
- Niewiadomski, A. On finity, countability, cardinalities, and cylindric extensions of type-2 fuzzy sets in linguistic summarization of databases. IEEE Trans. Fuzzy Syst. 2010, 18, 532–545. [Google Scholar] [CrossRef]
- Qiu, D.; Jiang, H.; Chen, S. Fuzzy Information Retrieval Based on Continuous Bag-of-Words Model. Symmetry 2020, 12, 225. [Google Scholar] [CrossRef]
- Flores, W.C.; Mombello, E.E.; Jardini, J.A.; Ratta, G.; Corvo, A.M. Expert systems for the assessment of power transformer insulation condition based on type-2 fuzzy logic systems. Expert Sys. Appl. 2011, 38, 8119–8127. [Google Scholar] [CrossRef]
- Absar, M.H.; Mirza, G.F.; Zakai, W.; John, Y.; Mansoor, N. Novel IoT-based plant monitoring system. Eng. Proc. 2023, 32, 12. [Google Scholar] [CrossRef]
- Rivas Pellicer, M.; Tungekar, M.Y.; Carpitella, S. Where to place monitoring sensors for improving complex manufacturing systems? discussing a real case in the food industry. Sensors 2023, 23, 3768. [Google Scholar] [CrossRef]
- Makhloufi, S.; Abdessemed, R. Type-2 fuzzy logic optimum PV/inverter sizing ratio for grid-connected PV systems: Application to selected Algerian locations. J. Electr. Eng. Technol. 2011, 6, 731–741. [Google Scholar] [CrossRef]
- Dereli, T.; Baykasoglu, A.; Altun, K.; Durmusoglu, A.; Turksen, I.B. Industrial applications of type2 fuzzy sets and systems: A concise review. Comput. Ind. 2011, 62, 125–137. [Google Scholar] [CrossRef]
- Wu, D.; Mendel, J.M. Uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 2007, 177, 5378–5393. [Google Scholar]
- Méndez, G.M.; Lopez-Juarez, I.; Dorantes, P.N.M.; Alcorta, M.A. A New method for design of interval type-3 fuzzy logic systems with uncertain type-2 non-singleton inputs (IT3 NSFLS-2): A study case in a hot strip mill. IEEE Access 2023, 11, 44065–44081. [Google Scholar] [CrossRef]
- Méndez, G.M.; López-Juárez, I.; Alcorta García, M.A.; Martinez-Peon, D.C.; Montes-Dorantes, P.N. The enhanced Wagner–Hagras OLS–BP hybrid algorithm for training IT3 NSFLS-1 for temperature prediction in HSM processes. Mathematics 2023, 11, 4933. [Google Scholar] [CrossRef]
- Mendel, J. Uncertain Rule-Based Fuzzy Systems. Introduction and New Directions, 2nd ed.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Wagner, C.; Hagras, H. zSlices Towards Bridging the Gap Between Interval and General Type-2 Fuzzy Logic. In Proceedings of the 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008. [Google Scholar]
- Wagner, C.; Hagras, H. Towards general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 2010, 18, 637–660. [Google Scholar] [CrossRef]
- Wagner, C.; Hagras, H. ZSlices based general type-2 fuzzy sets and systems. In Advances in Type-2 Fuzzy Sets and Systems: Theory and Applications; Sadeghian, A., Mende, J.M., Tahayori, H., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Mendel, J.M. General type-2 fuzzy logic systems made simple: A tutorial. IEEE Trans. Fuzzy Syst. 2014, 22, 1162–1182. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Sabzalian, M.H.; Zhang, W. An interval type-3 fuzzy system and a new online fractional-order learning algorithm: Theory and practice. IEEE Trans. Fuzzy Syst. 2019, 28, 1940–1950. [Google Scholar] [CrossRef]
- Qasem, S.N.; Ahmadian, A.; Mohammadzadeh, A.; Rathinasamy, S.; Pahlevanzadeh, B. A type-3 logic fuzzy system: Optimized by a correntropy based Kalman filter with adaptive fuzzy kernel size. Inf. Sci. 2021, 572, 424–443. [Google Scholar] [CrossRef]
- Gheisarnejad, M.; Mohammadzadeh, A.; Farsizadeh, V.; Khooban, M.H. Stabilization of 5G telecom converter-based deep type-3 fuzzy machine learning control for telecom applications. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 544–548. [Google Scholar] [CrossRef]
- Taghieh, A.; Mohammadzadeh, A.; Zhang, C.; Kausar, N.; Castillo, O. A type-3 fuzzy control for current sharing and voltage balancing in microgrids. Appl. Soft Comput. 2022, 129, 109636. [Google Scholar] [CrossRef]
- Tian, M.W.; Bouteraa, Y.; Alattas, K.A.; Yan, S.R.; Alanazi, A.K.; Mohammadzadeh, A.; Mobayen, S. A type-3 fuzzy approach for stabilization and synchronization of chaotic systems: Applicable for financial and physical chaotic systems. Complexity 2022, 2022, 1–17. [Google Scholar] [CrossRef]
- Ma, C.; Mohammadzadeh, A.; Turabieh, H.; Mafarja, M.; Band, S.S.; Mosavi, A. Optimal type-3 fuzzy system for solving singular multi-pantograph equations. IEEE Access 2020, 8, 225692–225702. [Google Scholar] [CrossRef]
- Tarafdar, A.; Majumder, P.; Deb, M.; Bera, U.K. Performance-emission optimization in a single cylinder CI-engine with diesel hydrogen dual fuel: A spherical fuzzy MARCOS MCGDM based Type-3 fuzzy logic approach. Int. J. Hydrogen Energy 2023, 48, 28601–28627. [Google Scholar] [CrossRef]
- Ochoa, P.; Castillo, O.; Melin, P.; Castro, J.R. Interval type-3 fuzzy differential evolution for parameterization of fuzzy controllers. Int. J. Fuzzy Syst. 2023, 25, 1360–1376. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Melin, P. Forecasting the COVID-19 with interval type-3 fuzzy logic and the fractal dimension. Int. J. Fuzzy Syst. 2022, 37, 7909–7943. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Castillo, O.; Band, S.S.; Mosavi, A. A novel fractional-order multiple-model type-3 fuzzy control for nonlinear systems with unmodeled dynamics. Int. J. Fuzzy Syst. 2021, 23, 1633–1651. [Google Scholar] [CrossRef]
- Wang, J.-h.; Tavoosi, J.; Mohammadzadeh, A.; Mobayen, S.; Asad, J.H.; Assawinchaichote, W.; Vu, M.T.; Skruch, P. Non-singleton type-3 fuzzy approach for flowmeter fault detection, experimental study in a gas industry. Sensors 2021, 21, 7419. [Google Scholar] [CrossRef]
- Vafaie, R.H.; Mohammadzadeh, A.; Piran, M.J. A new type-3 fuzzy predictive controller for mems gyroscopes. Nonlinear Dynam. 2021, 106, 381–403. [Google Scholar] [CrossRef]
- Tian, M.W.; Mohammadzadeh, A.; Tavoosi, J.; Mobayen, S.; Asad, J.H.; Castillo, O.; Várkonyi-Kóczy, A.R. A deep-learned type-3 fuzzy system and its application in modeling problems. Acta Polytech. Hung. 2022, 19, 151–172. [Google Scholar] [CrossRef]
- Cao, Y.; Raise, A.; Mohammadzadeh, A.; Rathinasamy, S.; Band, S.S.; Mosavi, A. Deep learned recurrent type-3 fuzzy system: Applications for renewable energy modeling/prediction. Energy Rep. 2021, 7, 8115–8127. [Google Scholar] [CrossRef]
- Tian, M.W.; Yan, S.R.; Mohammadzadeh, A.; Tavoosi, J.; Mobayen, S.; Safdar, R.; Assawinchaichote, W.; Vu, M.A.; Zhilenkov, A. Stability of interval type-3 fuzzy controllers for autonomous vehicles. Mathematics 2021, 9, 2742. [Google Scholar] [CrossRef]
- Castillo, O.; Valdez, F.; Peraza, C.; Yoon, J.H.; Geem, Z.W. High-speed interval type-2 fuzzy systems for dynamic parameter adaptation in harmony search for optimal design of fuzzy controllers. Mathematics 2021, 9, 758. [Google Scholar] [CrossRef]
- Liu, Z.; Mohammadzadeh, A.; Turabieh, H.; Mafarja, M.; Band, S.; Mosavi, A. A new online learned interval type-3 fuzzy control system for solar energy management systems. IEEE Access 2021, 9, 10498–10508. [Google Scholar] [CrossRef]
- Taghieh, A.; Mohammadzadeh, C.; Zhang, S.; Rathinasamy; Bekiros, S. A novel adaptive interval type-3 neuro-fuzzy robust controller for nonlinear complex dynamical systems with inherent uncertainties. Nonlinear Dyn. 2022, 111, 411–425. [Google Scholar] [CrossRef]
- Singh, D.J.; Verma, N.K.; Ghosh, A.K.; Malagaudanavar, A. An approach towards the design of interval type-3 T-S fuzzy system. IEEE Trans. Fuzzy Syst. 2022, 30, 3880–3893. [Google Scholar] [CrossRef]
- Singh, D.J.; Verma, N.K. Interval Type-3 T-S fuzzy system for nonlinear aerodynamic modeling. Appl. Soft Comput. 2024, 150, 111097. [Google Scholar] [CrossRef]
- Luukka, P.; Stoklasa, J. Possibilistic mean based defuzzification for fuzzy expert systems and fuzzy control—LSD for general fuzzy sets. J. Comput. Appl. Mat. 2024, 441, 115663. [Google Scholar] [CrossRef]
- Submerged Arc Welding (SAW)—Weld Guru. Available online: https://weldguru.com/submerged-arc-welding/ (accessed on 2 April 2024).
- Ramos-Jaime, D.; López-Juárez, I.; Perez, P. Effect of process parameters on robotic GMAW bead area estimation. Procedia Technol. 2013, 7, 398–405. [Google Scholar] [CrossRef]
- Wu, C.S.; Zhong, L.M.; Gao, J.Q. Visualization of hump formation in high-speed gas metal arc welding. Meas. Sci. Technol. 2009, 20, 115702. [Google Scholar] [CrossRef]
- Mendez, G.M.; Leduc, L.A.; Colas, R.; Cavazos, A.; Soto, R. Modelling recalescence after stock reduction during hot strip rolling. Ironmak. Steelmak. 2013, 33, 484–492. [Google Scholar] [CrossRef]
- Li, R.; Dong, M.; Gao, H. Prediction of bead geometry with changing welding speed using artificial neural network. Materials 2021, 14, 1494. [Google Scholar] [CrossRef] [PubMed]
- Giarollo, D.F.; Hackenhaar, W.; Mazzaferro, C.C.P.; Mazzaferro, J.A.E. Bead geometry prediction in pulsed GMAW welding: A comparative study on the performance of artificial neural network and regression models. Soldag. Inspeção 2022, 27, e2722. [Google Scholar] [CrossRef]
- Girón-Cruz, J.A.; Pinto-Lopera, J.E.; Alfaro, S.C.A. Weld bead geometry real-time control in gas metal arc welding processes using intelligent systems. Int. J. Adv. Manuf. Technol. 2022, 123, 3871–3884. [Google Scholar] [CrossRef]
- Tran, N.H.; Bui, V.H.; Hoang, V.T. Development of an artificial intelligence-based system for predicting weld bead geometry. Appl. Sci. 2023, 13, 4232. [Google Scholar] [CrossRef]
Fuzzy System | Consequent Section | Primary MF | Input Value | Secondary MF |
---|---|---|---|---|
T1 | Mamdani/TSK/TS | Type-1 | S | -- |
T1 | Mamdani/TSK/TS | Type-1 | NS-1 | -- |
IT2 | Mamdani/TSK/TS | Type-2 | S | I |
IT2 | Mamdani/TSK/TS | Type-2 | NS-1 | I |
WH GT2 | Mamdani/TSK/TS | Type-2 | S | NS-1 |
WH GT2 | Mamdani/TSK/TS | Type-2 | NS-1 | NS-1 |
WH IT3 | Mamdani/TSK/TS | Type-2 | S | NS-2 |
WH IT3 | Mamdani/TSK/TS | Type-2 | NS-1 | NS-2 |
Calculation | Calculation | |||
---|---|---|---|---|
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 |
Parameter of the Antecedent Membership Function That Contributes to the Left-Most Section | |||
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 |
Parameter of the Antecedent Membership Function that Contributes to the Right-Most Section | |||
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 |
Lower Contribution | |
---|---|
1 | |
2 | |
3 | |
4 |
Lower Contribution | |
---|---|
1 | |
2 | |
3 | |
4 |
Advantage | |
---|---|
1 | It is the only consumable electrode welding process that can be used to weld all commercial metals and alloys. |
2 | It can be performed in all positions, unlike submerged metal arc welding. |
3 | The continuous electrode feeding and metal deposition rates in GMAW are significantly higher than those of shielded metal arc welding (SMAW). |
4 | Due to higher metal filler deposition rates, welding speeds in GMAW can be higher than those obtained with SMAW. |
5 | The wire feed is continuous with GMAW, so longer welds can be made. |
6 | It has no restriction on electrode length as in SMAW. |
Disadvantage | |
---|---|
1 | The welding equipment is more complex and therefore more expensive and less portable compared to SMAW. |
2 | Protection against air drafts is required. |
3 | Higher levels of radiated heat and arc intensity are produced. |
Variable | Units | Lower Limit | Mean | Upper Limit | Data Source |
---|---|---|---|---|---|
Voltage | V | 23 | 25 | 27 | Analog value from the 455M Lincoln Power Supply converted to digital value using the Sensoray 626 data acquisition card |
Wire feed speed | inch/min | 250 | 300 | 350 | Analog value to the 10M-10R Lincoln wire feeder |
Travel speed | m/s | 0.007 | 0.009 | 0.011 | Data taken from the KUKA robot controller |
Variable | Characteristic | |
---|---|---|
1 | Gas type | Ar 99.999% |
2 | Gas pressure | 30–40 PSI |
3 | Electrode type | LS-6 Steel |
4 | Electrode diameter | 0.9 mm (0.035”) |
5 | Base metal | Steel 1018 |
6 | Base metal thickness | ½” (4 ¾” × 1 ½” × ½”) |
7 | Work distance | ¾” ± ¼” |
8 | Joint type | “Bead on plate” |
Rule | (m/s) | (V) | (m/s) | (mm) | (mm) | (mm) |
---|---|---|---|---|---|---|
1 | 250 | 23 | 0.007615 | 5.20216 | 1.95029 | 0.49972 |
2 | 250 | 23 | 0.009315 | 5.91676 | 1.93362 | 0.63305 |
3 | 250 | 23 | 0.0115 | 5.15011 | 1.66675 | 0.93459 |
4 | 250 | 25 | 0.007615 | 6.15002 | 1.75008 | 0.66665 |
5 | 250 | 25 | 0.009315 | 5.41667 | 1.71667 | 0.46673 |
6 | 250 | 25 | 0.0115 | 4.66714 | 1.6 | 0.70097 |
7 | 250 | 27 | 0.007615 | 4.71714 | 2.66688 | 0.76682 |
8 | 250 | 27 | 0.009315 | 4.30003 | 2.38427 | 0.68258 |
9 | 250 | 27 | 0.0115 | 4.23337 | 1.83364 | 0.23364 |
10 | 300 | 23 | 0.007615 | 5.55003 | 2.56672 | 0.54999 |
11 | 300 | 23 | 0.009315 | 4.55195 | 2.40023 | 0.66684 |
12 | 300 | 23 | 0.0115 | 5.18376 | 1.86667 | 0.60006 |
13 | 300 | 25 | 0.007615 | 4.95003 | 2.6 | 0.55004 |
14 | 300 | 25 | 0.009315 | 5.28399 | 2.1 | 1.13338 |
15 | 300 | 25 | 0.0115 | 4.93359 | 2.13359 | 0.85048 |
16 | 300 | 27 | 0.007615 | 5.35439 | 2.5005 | 0.63354 |
17 | 300 | 27 | 0.009315 | 4.7174 | 2.85312 | 0.71355 |
18 | 300 | 27 | 0.0115 | 3.80015 | 2.20006 | 0.59999 |
19 | 350 | 23 | 0.007615 | 5.68355 | 2.55136 | 0.68266 |
20 | 350 | 23 | 0.009315 | 5.95336 | 2.91971 | 0.75002 |
21 | 350 | 23 | 0.0115 | 5.7001 | 2.20025 | 0.58308 |
22 | 350 | 25 | 0.007615 | 4.53361 | 3.03375 | 0.68352 |
23 | 350 | 25 | 0.009315 | 4.95 | 2.60005 | 0.78394 |
24 | 350 | 25 | 0.0115 | 5.06941 | 2.30054 | 0.9668 |
25 | 350 | 27 | 0.007615 | 3.45004 | 3.35149 | 1.28292 |
26 | 350 | 27 | 0.009315 | 4.65 | 3.05018 | 0.56652 |
27 | 350 | 27 | 0.0115 | 4.88379 | 2.93376 | 0.38308 |
Rule | (m/s) | (V) | (m/s) |
---|---|---|---|
1 | 250 | 23 | 0.007615 |
2 | 250 | 23 | 0.009315 |
3 | 250 | 23 | 0.0115 |
4 | 250 | 25 | 0.007615 |
5 | 250 | 25 | 0.009315 |
6 | 250 | 25 | 0.0115 |
7 | 250 | 27 | 0.007615 |
8 | 250 | 27 | 0.009315 |
9 | 250 | 27 | 0.0115 |
10 | 300 | 23 | 0.007615 |
11 | 300 | 23 | 0.009315 |
12 | 300 | 23 | 0.0115 |
13 | 300 | 25 | 0.007615 |
14 | 300 | 25 | 0.009315 |
15 | 300 | 25 | 0.0115 |
16 | 300 | 27 | 0.007615 |
17 | 300 | 27 | 0.009315 |
18 | 300 | 27 | 0.0115 |
19 | 350 | 23 | 0.007615 |
20 | 350 | 23 | 0.009315 |
21 | 350 | 23 | 0.0115 |
22 | 350 | 25 | 0.007615 |
23 | 350 | 25 | 0.009315 |
24 | 350 | 25 | 0.0115 |
25 | 350 | 27 | 0.007615 |
26 | 350 | 27 | 0.009315 |
27 | 350 | 27 | 0.0115 |
Rule | (m/s) | (m/s) | (V) | (V) | (m/s) | (m/s) |
---|---|---|---|---|---|---|
1 | 249 | 251 | 22 | 24 | 0.00760 | 0.00763 |
2 | 249 | 251 | 22 | 24 | 0.00930 | 0.00932 |
3 | 249 | 251 | 22 | 24 | 0.010 | 0.012 |
4 | 249 | 251 | 24 | 26 | 0.00760 | 0.00763 |
5 | 249 | 251 | 24 | 26 | 0.00930 | 0.00932 |
6 | 249 | 251 | 24 | 26 | 0.010 | 0.012 |
7 | 249 | 251 | 26 | 28 | 0.00760 | 0.00763 |
8 | 249 | 251 | 26 | 28 | 0.00930 | 0.00932 |
9 | 249 | 251 | 26 | 28 | 0.010 | 0.012 |
10 | 299 | 301 | 22 | 24 | 0.00760 | 0.00763 |
11 | 299 | 301 | 22 | 24 | 0.00930 | 0.00932 |
12 | 299 | 301 | 22 | 24 | 0.010 | 0.012 |
13 | 299 | 301 | 24 | 26 | 0.00760 | 0.00763 |
14 | 299 | 301 | 24 | 26 | 0.00930 | 0.00932 |
15 | 299 | 301 | 24 | 26 | 0.010 | 0.012 |
16 | 299 | 301 | 26 | 28 | 0.00760 | 0.00763 |
17 | 299 | 301 | 26 | 28 | 0.00930 | 0.00932 |
18 | 299 | 301 | 26 | 28 | 0.010 | 0.012 |
19 | 349 | 351 | 22 | 24 | 0.00760 | 0.00763 |
20 | 349 | 351 | 22 | 24 | 0.00930 | 0.00932 |
21 | 349 | 351 | 22 | 24 | 0.010 | 0.012 |
22 | 349 | 351 | 24 | 26 | 0.00760 | 0.00763 |
23 | 349 | 351 | 24 | 26 | 0.00930 | 0.00932 |
24 | 349 | 351 | 24 | 26 | 0.010 | 0.012 |
25 | 349 | 351 | 26 | 28 | 0.00760 | 0.00763 |
26 | 349 | 351 | 26 | 28 | 0.00930 | 0.00932 |
27 | 349 | 351 | 26 | 28 | 0.010 | 0.012 |
Rule | (m/s) | (V) | (m/s) | (mm) | (mm) | (mm) |
---|---|---|---|---|---|---|
1 | 250 | 23 | 0.007615 | 5.50205 | 2.28552 | 0.3164 |
2 | 250 | 23 | 0.009315 | 5.16734 | 1.95007 | 0.75075 |
3 | 250 | 23 | 0.0115 | 5.83393 | 1.65008 | 0.81658 |
4 | 250 | 25 | 0.007615 | 5.41708 | 1.93362 | 0.76684 |
5 | 250 | 25 | 0.009315 | 6.91867 | 2.1006 | 0.79984 |
6 | 250 | 25 | 0.0115 | 4.66774 | 1.60009 | 0.49998 |
7 | 250 | 27 | 0.007615 | 4.50012 | 2.16667 | 0.28384 |
8 | 250 | 27 | 0.009315 | 7.36759 | 2.11667 | 0.28426 |
9 | 250 | 27 | 0.0115 | 4.98434 | 2.01674 | 0.69998 |
10 | 300 | 23 | 0.007615 | 6.16676 | 2.45006 | 0.58401 |
11 | 300 | 23 | 0.009315 | 5.36876 | 2.11903 | 0.63143 |
12 | 300 | 23 | 0.0115 | 5.93371 | 1.8 | 0.30027 |
13 | 300 | 25 | 0.007615 | 5.56667 | 3.03498 | 0.46502 |
14 | 300 | 25 | 0.009315 | 6.03336 | 1.86667 | 0.78354 |
15 | 300 | 25 | 0.0115 | 4.7174 | 1.83341 | 0.88331 |
16 | 300 | 27 | 0.007615 | 4.18337 | 2.88338 | 0.84999 |
17 | 300 | 27 | 0.009315 | 4.41695 | 2.20006 | 0.6168 |
18 | 300 | 27 | 0.0115 | 3.60004 | 2.33339 | 0.58346 |
19 | 350 | 23 | 0.007615 | 6.70002 | 2.81672 | 0.93388 |
20 | 350 | 23 | 0.009315 | 5.43344 | 2.38357 | 0.63425 |
21 | 350 | 23 | 0.0115 | 4.66679 | 2.20006 | 0.49999 |
22 | 350 | 25 | 0.007615 | 7.15 | 3.86681 | 0.48322 |
23 | 350 | 25 | 0.009315 | 3.96838 | 2.61714 | 1.0014 |
24 | 350 | 25 | 0.0115 | 5.20024 | 2.43339 | 0.68332 |
25 | 350 | 27 | 0.007615 | 4.23347 | 2.78333 | 1.13333 |
26 | 350 | 27 | 0.009315 | 3.8167 | 3.23338 | 0.93332 |
27 | 350 | 27 | 0.0115 | 4.40382 | 2.8179 | 0.78349 |
Coil Type | Target Gage (mm) | Target Width (mm) | Steel Grade (SAE-AISI) |
---|---|---|---|
A | 1.879 | 1041.0 | 1006 |
B | 2.006 | 991.0 | 1006 |
C | 2.159 | 952.0 | 1006 |
1 | 1010 | 1012 | 30 |
2 | 1040 | 1042 | 30 |
3 | 1070 | 1072 | 30 |
4 | 1100 | 1102 | 30 |
5 | 1130 | 1132 | 30 |
1 | 32.16 | 32.66 | 2.72 |
2 | 34.88 | 35.38 | 2.72 |
3 | 37.60 | 38.10 | 2.72 |
4 | 40.32 | 40.82 | 2.72 |
5 | 43.04 | 43.54 | 2.72 |
Rule | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1010 | 1012 | 30 | 32.16 | 32.66 | 2.7 | 0 | 0 |
2 | 1010 | 1012 | 30 | 34.88 | 35.38 | 2.7 | 0 | 0 |
3 | 1010 | 1012 | 30 | 37.60 | 38.10 | 2.7 | 0 | 0 |
4 | 1010 | 1012 | 30 | 40.32 | 40.82 | 2.7 | 0 | 0 |
5 | 1010 | 1012 | 30 | 43.04 | 43.54 | 2.7 | 0 | 0 |
6 | 1040 | 1042 | 30 | 32.16 | 32.66 | 2.7 | 0 | 0 |
7 | 1040 | 1042 | 30 | 34.88 | 35.38 | 2.7 | 0 | 0 |
8 | 1040 | 1042 | 30 | 37.60 | 38.10 | 2.7 | 0 | 0 |
9 | 1040 | 1042 | 30 | 40.32 | 40.82 | 2.7 | 0 | 0 |
10 | 1040 | 1042 | 30 | 43.04 | 43.54 | 2.7 | 0 | 0 |
11 | 1070 | 1072 | 30 | 32.16 | 32.66 | 2.7 | 0 | 0 |
12 | 1070 | 1072 | 30 | 34.88 | 35.38 | 2.7 | 0 | 0 |
13 | 1070 | 1072 | 30 | 37.60 | 38.10 | 2.7 | 0 | 0 |
14 | 1070 | 1072 | 30 | 40.32 | 40.82 | 2.7 | 0 | 0 |
15 | 1070 | 1072 | 30 | 43.04 | 43.54 | 2.7 | 0 | 0 |
16 | 1100 | 1102 | 30 | 32.16 | 32.66 | 2.7 | 0 | 0 |
17 | 1100 | 1102 | 30 | 34.88 | 35.38 | 2.7 | 0 | 0 |
18 | 1100 | 1102 | 30 | 37.60 | 38.10 | 2.7 | 0 | 0 |
19 | 1100 | 1102 | 30 | 40.32 | 40.82 | 2.7 | 0 | 0 |
20 | 1100 | 1102 | 30 | 43.04 | 43.54 | 2.7 | 0 | 0 |
21 | 1130 | 1132 | 30 | 32.16 | 32.66 | 2.7 | 0 | 0 |
22 | 1130 | 1132 | 30 | 34.88 | 35.38 | 2.7 | 0 | 0 |
23 | 1130 | 1132 | 30 | 37.60 | 38.10 | 2.7 | 0 | 0 |
24 | 1130 | 1132 | 30 | 40.32 | 40.82 | 2.7 | 0 | 0 |
25 | 1130 | 1132 | 30 | 43.04 | 43.54 | 2.7 | 0 | 0 |
1 | 10 | 100 | 1000 | |
---|---|---|---|---|
IT2 SFLS | 1.4249 | |||
IT2 NSFLS-1 | 1.2542 | |||
WH GT2 SFLS | 1.4515 | 1.1501 | 1.4912 | 1.5727 |
EWH GT2 SFLS | 1.4497 | 1.1433 | 1.4852 | 1.5166 |
WH GT2 NSFLS-1 | 1.0397 | 1.2338 | 1.097 | 1.3325 |
EWH GT2 NSFLS-1 | 1.0383 | 1.1534 | 1.0321 | 1.326 |
WH GT2 TSK SFLS | 0.09789 | 0.06287 | 0.06071 | 0.09233 |
EWH GT2 TSK SFLS | 0.09655 | 0.06221 | 0.05778 | 0.09008 |
WH GT2 TSK NSFLS-1 | 0.0007484 | 0.0005886 | 0.0004495 | 0.0007883 |
EWH GT2 TSK NSFLS-1 | 0.0005348 | 0.0003876 | 0.0002038 | 0.0005204 |
1 | 2 | 22 | 202 | 2002 | |
---|---|---|---|---|---|
IT2 SFLS | 1.4249 | ||||
IT2 NSFLS-1 | 1.2542 | ||||
WH IT3 SFLS | 1.4212 | 1.0573 | 1.4063 | 1.4568 | |
EWH IT3 SFLS | 1.4192 | 1.0528 | 1.4016 | 1.4239 | |
WH IT3 NSFLS-1 | 0.9729 | 1.1107 | 1.0547 | 1.2197 | |
EWH IT3 NSFLS-1 | 0.8761 | 1.0125 | 1.0275 | 1.168 | |
WH IT3 TSK SFLS | 6.522 × 10−7 | 2.973 × 10−7 | 5.795 × 10−7 | 6.312 × 10−7 | |
EWH IT3 TSK SFLS | 0.3382 × 10−7 | 0.1289 × 10−7 | 0.2239 × 10−7 | 0.3198 × 10−7 | |
WH IT3 TSK NSFLS-1 | 4.755 × 10−7 | 1.892 × 10−7 | 3.458 × 10−7 | 4.504 × 10−7 | |
EWH IT3 TSK NSFLS-1 | 0.1809 × 10−7 | 0.1066 × 10−7 | 0.1003 × 10−7 | 0.2409 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castorena, G.A.H.; Méndez, G.M.; López-Juárez, I.; García, M.A.A.; Martinez-Peon, D.C.; Montes-Dorantes, P.N. Parameter Prediction with Novel Enhanced Wagner Hagras Interval Type-3 Takagi–Sugeno–Kang Fuzzy System with Type-1 Non-Singleton Inputs. Mathematics 2024, 12, 1976. https://doi.org/10.3390/math12131976
Castorena GAH, Méndez GM, López-Juárez I, García MAA, Martinez-Peon DC, Montes-Dorantes PN. Parameter Prediction with Novel Enhanced Wagner Hagras Interval Type-3 Takagi–Sugeno–Kang Fuzzy System with Type-1 Non-Singleton Inputs. Mathematics. 2024; 12(13):1976. https://doi.org/10.3390/math12131976
Chicago/Turabian StyleCastorena, Gerardo Armando Hernández, Gerardo Maximiliano Méndez, Ismael López-Juárez, María Aracelia Alcorta García, Dulce Citlalli Martinez-Peon, and Pascual Noradino Montes-Dorantes. 2024. "Parameter Prediction with Novel Enhanced Wagner Hagras Interval Type-3 Takagi–Sugeno–Kang Fuzzy System with Type-1 Non-Singleton Inputs" Mathematics 12, no. 13: 1976. https://doi.org/10.3390/math12131976
APA StyleCastorena, G. A. H., Méndez, G. M., López-Juárez, I., García, M. A. A., Martinez-Peon, D. C., & Montes-Dorantes, P. N. (2024). Parameter Prediction with Novel Enhanced Wagner Hagras Interval Type-3 Takagi–Sugeno–Kang Fuzzy System with Type-1 Non-Singleton Inputs. Mathematics, 12(13), 1976. https://doi.org/10.3390/math12131976