Studies on the Marchenko–Pastur Law
Abstract
:1. Introduction
2. A Property of Based on Fermi Convolution
- (i)
- (ii)
- ✔
- If , then with can not serve as a variance function, see ([2] page 6).
- ✔
3. A Property of Based on -Convolution
- ✔
- If , then with cannot be a variance function (see [2] (page 6)).
- ✔
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szpojankowski, K. A constant regression characterization of the Marchenko-Pastur law. Probab. Math. 2016, 36, 137–145. [Google Scholar]
- Fakhfakh, R. A characterization of the Marchenko-Pastur probability measure. Stat. Probab. Lett. 2022, 191, 109660. [Google Scholar] [CrossRef]
- Yaskov, P. A short proof of the Marchenko-Pastur theorem. Comptes Rendus Math. 2016, 354, 319–322. [Google Scholar] [CrossRef]
- Bożejko, M.; Luís da Silva, J.; Kuna, T.; Lytvynov, E. Approximation of a free Poisson process by systems of freely independent particles. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2018, 21, 1850020. [Google Scholar] [CrossRef]
- Bryson, J.; Vershynin, R.; Zhao, H. Marchenko-Pastur law with relaxed independence conditions. Random Matrices Theory Appl. 2021, 10, 2150040. [Google Scholar] [CrossRef]
- Benaych-Georges, F. On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolutions. Ann. L’Ihp Probab. Stat. 2010, 46, 644–652. [Google Scholar] [CrossRef]
- Götze, F.; Tikhomirov, A. Rate of convergence in probability to the Marchenko-Pastur law. Bernoulli 2004, 10, 503–548. [Google Scholar] [CrossRef]
- Hinz, M.; Mlotkowski, W. Free powers of the free Poisson measure. Colloq. Math. 2011, 123, 285–290. [Google Scholar] [CrossRef]
- Kornyik, M.; Michaletzky, G. On the moments of roots of Laguerre-Polynomials and the Marchenko-Pastur law. Annales Univ. Sci. Budapest. Sect. Comp. 2017, 46, 137–151. [Google Scholar]
- Bourguin, S. Poisson convergence on the free Poisson algebra. Bernoulli 2015, 21, 2139–2156. [Google Scholar] [CrossRef]
- Oravecz, F. Fermi convolution. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2002, 5, 235–242. [Google Scholar] [CrossRef]
- Bożejko, M.; Wysoczański, J. New examples of onvolutions and non-commutative central limit theorems. Banach Cent. Publ. 1998, 43, 95–103. [Google Scholar] [CrossRef]
- Bożejko, M.; Wysoczański, J. Remarks on t-transformations of measures and convolutions. Ann. Inst. Henri Poincare B Probab. Statist. 2001, 37, 737–761. [Google Scholar] [CrossRef]
- Bryc, W. Free exponential families as kernel families. Demonstr. Math. 2009, 42, 657–672. [Google Scholar] [CrossRef]
- Bryc, W.; Hassairi, A. One-sided Cauchy-Stieltjes kernel families. J. Theor. Probab. 2011, 24, 577–594. [Google Scholar] [CrossRef]
- Fakhfakh, R. Fermi convolution and variance function. Proc. Rom. Acad. Ser. A 2023, 24, 3–10. [Google Scholar] [CrossRef]
- Krystek, A.D.; Yoshida, H. Generalized t-transformations of probability measures and deformed convolution. Probab. Math. Stat. 2004, 24, 97–119. [Google Scholar]
- Wojakowski, L.J. The Lévy-Khintchine formula and Nica-Sprichet property for deformations of the free convolution. Banach Cent. Publ. 2007, 78, 309–314. [Google Scholar]
- Alanzi, A.R.A.; Fakhfakh, R.; Alshahrani, F. On Generalizedt-Transformation of Free Convolution. Symmetry 2024, 16, 372. [Google Scholar] [CrossRef]
- Fakhfakh, R. Characterization of quadratic Cauchy-Stieltjes Kernels families based on the orthogonality of polynomials. J. Math. Anal. Appl. 2018, 459, 577–589. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanzi, A.R.A.; Alqasem, O.A.; Elwahab, M.E.A.; Fakhfakh, R. Studies on the Marchenko–Pastur Law. Mathematics 2024, 12, 2060. https://doi.org/10.3390/math12132060
Alanzi ARA, Alqasem OA, Elwahab MEA, Fakhfakh R. Studies on the Marchenko–Pastur Law. Mathematics. 2024; 12(13):2060. https://doi.org/10.3390/math12132060
Chicago/Turabian StyleAlanzi, Ayed. R. A., Ohud A. Alqasem, Maysaa Elmahi Abd Elwahab, and Raouf Fakhfakh. 2024. "Studies on the Marchenko–Pastur Law" Mathematics 12, no. 13: 2060. https://doi.org/10.3390/math12132060
APA StyleAlanzi, A. R. A., Alqasem, O. A., Elwahab, M. E. A., & Fakhfakh, R. (2024). Studies on the Marchenko–Pastur Law. Mathematics, 12(13), 2060. https://doi.org/10.3390/math12132060