Mitigating Adversarial Attacks in Object Detection through Conditional Diffusion Models
Abstract
:1. Introduction
- We formulate the defense as restoring images twice using a diffusion model for images masked by a two-stage mask. To our knowledge, this is the inaugural research to utilize diffusion models in the realm of object detection defense.
- In order to dismantle the global perturbation and reconstruct the image, we employ random_mosaic to create mask occlusions for the entire image. The original images serve as the input condition, guaranteeing that the class of the target image remains unaffected. This approach ensures the maximum possible elimination of the anti-disturbance.
- When compared to the HARP method under non-adaptive conditions, our method exhibits an improvement in the mean Average Precision (mAP) by 5% on the COCO2017 dataset and 6.5% on the PASCAL VOC dataset. Furthermore, our method demonstrates greater generalizability across various scenarios. Specifically, it achieves an mAP of 62.4% under the Momentum Iterative Method (MIM) attack and 62.1% under the Projected Gradient Descent (PGD) attack. These results underscore the effectiveness and applicability of our proposed method in defending against adversarial attacks in object detection tasks. Our approach provides a promising direction for future research in this area.
2. Related Work
3. Methodology
3.1. Preliminaries: Diffusion Models
3.2. Architecture
4. Experiments
4.1. Experimental Settings
4.2. Robustness and Efficiency
4.3. Image Recovery Quality Analysis for FID Assessment
4.4. Generalizability of Method
4.5. Ablation Study
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1–9. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016; pp. 770–778. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; IEEE: New York, NY, USA, 2015; pp. 1440–1448. [Google Scholar]
- Zhang, Z.; Qiao, S.; Xie, C.; Shen, W.; Wang, B.; Yuille, A.L. Single-shot object detection with enriched semantics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, NY, USA, 2018; pp. 5813–5821. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 1–9. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; IEEE: New York, NY, USA, 2015; pp. 3431–3440. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Xie, C.; Zhou, Y.; Premachandran, V.; Zhu, J.; Xie, L.; Yuille, A. Visual concepts and compositional voting. arXiv 2017, arXiv:1711.04451. [Google Scholar] [CrossRef]
- Deng, S.; Wen, J.; Liu, C.; Yan, K.; Xu, G.; Xu, Y. Projective Incomplete Multi-View Clustering. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 10539–10551. [Google Scholar] [CrossRef]
- Wen, J.; Liu, C.; Deng, S.; Liu, Y.; Fei, L.; Yan, K.; Xu, Y. Deep Double Incomplete Multi-View Multi-Label Learning With Incomplete Labels and Missing Views. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 11396–11408. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial machine learning at scale. arXiv 2016, arXiv:1611.01236. [Google Scholar]
- Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh, D.; McDaniel, P. Ensemble adversarial training: Attacks and defenses. arXiv 2017, arXiv:1705.07204. [Google Scholar]
- Cao, X.; Gong, N.Z. Mitigating evasion attacks to deep neural networks via region-based classification. In Proceedings of the 33rd Annual Computer Security Applications Conference, Orlando, FL, USA, 4–8 December 2017; ACM: New York, NY, USA, 2017; pp. 278–287. [Google Scholar]
- Feinman, R.; Curtin, R.R.; Shintre, S.; Gardner, A.B. Detecting adversarial samples from artifacts. arXiv 2017, arXiv:1703.00410. [Google Scholar]
- Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; Swami, A. Distillation as a defense to adversarial perturbations against deep neural networks. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; IEEE: New York, NY, USA, 2016; pp. 582–597. [Google Scholar]
- Meng, D.; Chen, H. Magnet: A two-pronged defense against adversarial examples. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; ACM: New York, NY, USA, 2017; pp. 135–147. [Google Scholar]
- Lu, J.; Sibai, H.; Fabry, E.; Forsyth, D. No need to worry about adversarial examples in object detection in autonomous vehicles. arXiv 2017, arXiv:1707.03501. [Google Scholar]
- Wei, X.; Liang, S.; Chen, N.; Cao, X. Transferable adversarial attacks for image and video object detection. arXiv 2018, arXiv:1811.12641. [Google Scholar]
- Papernot, N.; Faghri, F.; Carlini, N.; Goodfellow, I.; Feinman, R.; Kurakin, A.; Xie, C.; Sharma, Y.; Brown, T.; Roy, A. Technical report on the CleverHans v2.1.0 adversarial examples library. arXiv 2016, arXiv:1610.00768. [Google Scholar]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Hendrycks, D.; Gimpel, K. Early methods for detecting adversarial images. arXiv 2016, arXiv:1608.00530. [Google Scholar]
- Hill, M.; Mitchell, J.; Zhu, S.-C. Stochastic Security: Adversarial Defense Using Long-Run Dynamics of Energy-Based Models. arXiv 2020, arXiv:2005.13525. [Google Scholar]
- Lin, W.-A.; Balaji, Y.; Samangouei, P.; Chellappa, R. Invert and Defend: Model-Based Approximate Inversion of Generative Adversarial Networks for Secure Inference. arXiv 2019, arXiv:1911.10291. [Google Scholar]
- Song, Y.; Kim, T.; Nowozin, S.; Ermon, S.; Kushman, N. PixelDefend: Leveraging Generative Models to Understand and Defend Against Adversarial Examples. arXiv 2017, arXiv:1710.10766. [Google Scholar]
- Du, Y.; Mordatch, I. Implicit Generation and Modeling with Energy Based Models. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Grathwohl, W.; Wang, K.-C.; Jacobsen, J.-H.; Duvenaud, D.; Norouzi, M.; Swersky, K. Your Classifier is Secretly an Energy Based Model and You Should Treat It Like One. arXiv 2019, arXiv:1912.03263. [Google Scholar]
- Yoon, J.; Hwang, S.J.; Lee, J. Adversarial Purification with Score-Based Generative Models. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 12062–12072. [Google Scholar]
- Song, Y.; Ermon, S. Generative Modeling by Estimating Gradients of the Data Distribution. Adv. Neural Inf. Process. Syst. 2019, 32, 11918–11930. [Google Scholar]
- Saharia, C.; Chan, W.; Chang, H.; Lee, C.; Ho, J.; Salimans, T.; Fleet, D.; Norouzi, M. Palette: Image-to-image diffusion models. In Proceedings of the ACM SIGGRAPH 2022 Conference Proceedings, Vancouver, BC, Canada, 7–11 August 2022; ACM: New York, NY, USA, 2022; pp. 1–10. [Google Scholar]
- Austin, J.; Johnson, D.D.; Ho, J.; Tarlow, D.; Van Den Berg, R. Structured denoising diffusion models in discrete state-spaces. Adv. Neural Inf. Process. Syst. 2021, 34, 17981–17993. [Google Scholar]
- Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4713–4726. [Google Scholar] [CrossRef]
- Dhariwal, P.; Nichol, A. Diffusion models beat GANs on image synthesis. Adv. Neural Inf. Process. Syst. 2021, 34, 8780–8794. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016; pp. 779–788. [Google Scholar]
- Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv 2013, arXiv:1312.6229. [Google Scholar]
- Wen, J.; Deng, S.; Fei, L.; Zhang, Z.; Zhang, B.; Zhang, Z.; Xu, Y. Discriminative Regression with Adaptive Graph Diffusion. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 1797–1809. [Google Scholar] [CrossRef]
- Liu, C.; Wen, J.; Wu, Z.; Luo, X.; Huang, C.; Xu, Y. Information Recovery-Driven Deep Incomplete Multiview Clustering Network. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–11. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; IEEE: New York, NY, USA, 2014; pp. 580–587. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object detection via region-based fully convolutional networks. Adv. Neural Inf. Process. Syst. 2016, 29, 1–9. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; IEEE: New York, NY, USA, 2017; pp. 2961–2969. [Google Scholar]
- Li, Z.; Peng, C.; Yu, G.; Zhang, X.; Deng, Y.; Sun, J. Light-head R-CNN: In defense of two-stage object detector. arXiv 2017, arXiv:1711.07264. [Google Scholar]
- Zeng, X. Deep Neural Networks for Object Detection; The Chinese University of Hong Kong: Hong Kong, China, 2016. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Shah, S.; Tembhurne, J. Object Detection Using Convolutional Neural Networks and Transformer-Based Models: A Review. J. Electr. Syst. Inf. Technol. 2023, 10, 54. [Google Scholar] [CrossRef]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning; PMLR: Lille, France, 2015; pp. 2256–2265. [Google Scholar]
- Song, Y.; Sohl-Dickstein, J.; Kingma, D.P.; Kumar, A.; Ermon, S.; Poole, B. Score-based generative modeling through stochastic differential equations. arXiv 2020, arXiv:2011.13456. [Google Scholar]
- Ho, J.; Saharia, C.; Chan, W.; Fleet, D.J.; Norouzi, M.; Salimans, T. Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res. 2022, 23, 1–33. [Google Scholar]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; IEEE: New York, NY, USA, 2022; pp. 10684–10695. [Google Scholar]
- Lugmayr, A.; Danelljan, M.; Romero, A.; Yu, F.; Timofte, R.; Van Gool, L. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; IEEE: New York, NY, USA, 2022; pp. 11461–11471. [Google Scholar]
- Xia, B.; Zhang, Y.; Wang, S.; Wang, Y.; Wu, X.; Tian, Y.; Yang, W.; Van Gool, L. Diffir: Efficient diffusion model for image restoration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; IEEE: New York, NY, USA, 2023; pp. 13095–13105. [Google Scholar]
- Fernandez, V.; Sanchez, P.; Pinaya, W.H.L.; Jacenków, G.; Tsaftaris, S.A.; Cardoso, J. Privacy distillation: Reducing re-identification risk of multimodal diffusion models. arXiv 2023, arXiv:2306.01322. [Google Scholar]
- Matsumoto, T.; Miura, T.; Yanai, N. Membership Inference Attacks against Diffusion Models. In Proceedings of the 2023 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 22–26 May 2023; IEEE: New York, NY, USA, 2023; pp. 77–83. [Google Scholar]
- An, S.; Chou, S.-Y.; Zhang, K.; Xu, Q.; Tao, G.; Shen, G.; Cheng, S.; Ma, S.; Chen, P.-Y.; Ho, T.-Y.; et al. Elijah: Eliminating Backdoors Injected in Diffusion Models via Distribution Shift. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, Number 10. pp. 10847–10855. [Google Scholar]
- Duan, J.; Kong, F.; Wang, S.; Shi, X.; Xu, K. Are Diffusion Models Vulnerable to Membership Inference Attacks? In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; PMLR: Cambridge, UK, 2023; pp. 8717–8730. [Google Scholar]
- Chen, W.; Song, D.; Li, B. Trojdiff: Trojan Attacks on Diffusion Models with Diverse Targets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 4035–4044. [Google Scholar]
- Zhai, S.; Dong, Y.; Shen, Q.; Pu, S.; Fang, Y.; Su, H. Text-to-Image Diffusion Models Can Be Easily Backdoored through Multimodal Data Poisoning. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 2–6 October 2023; p. 1577. [Google Scholar]
- Liang, C.; Wu, X.; Hua, Y.; Zhang, J.; Xue, Y.; Song, T.; Xue, Z.; Ma, R.; Guan, H. Adversarial Example Does Good: Preventing Painting Imitation from Diffusion Models via Adversarial Examples. arXiv 2023, arXiv:2302.04578. [Google Scholar]
- Liang, C.; Wu, X. Mist: Towards Improved Adversarial Examples for Diffusion Models. arXiv 2023, arXiv:2305.12683. [Google Scholar]
- Xie, C.; Wang, J.; Zhang, Z.; Zhou, Y.; Xie, L.; Yuille, A. Adversarial Examples for Semantic Segmentation and Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; IEEE: New York, NY, USA, 2017; pp. 1369–1378. [Google Scholar]
- Li, Y.; Tian, D.; Chang, M.-C.; Bian, X.; Lyu, S. Robust adversarial perturbation on deep proposal-based models. arXiv 2018, arXiv:1809.05962. [Google Scholar]
- Chow, K.-H.; Liu, L.; Loper, M.; Bae, J.; Gursoy, M.E.; Truex, S.; Wei, W.; Wu, Y. Adversarial objectness gradient attacks in real-time object detection systems. In Proceedings of the 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 28–31 October 2020; IEEE: New York, NY, USA, 2020; pp. 263–272. [Google Scholar]
- Bao, J. Sparse adversarial attack to object detection. arXiv 2020, arXiv:2012.13692. [Google Scholar]
- Thys, S.; Van Ranst, W.; Goedemé, T. Fooling automated surveillance cameras: Adversarial patches to attack person detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Yang, D.Y.; Xiong, J.; Li, X.; Yan, X.; Raiti, J.; Wang, Y.; Wu, H.; Zhong, Z. Building Towards “Invisible Cloak”: Robust Physical Adversarial Attack on YOLO Object Detector. In Proceedings of the 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 8–10 November 2018; IEEE: New York, NY, USA, 2018; pp. 368–374. [Google Scholar]
- Zhao, Y.; Yan, H.; Wei, X. Object hider: Adversarial patch attack against object detectors. arXiv 2020, arXiv:2010.14974. [Google Scholar]
- Liu, X.; Yang, H.; Liu, Z.; Song, L.; Li, H.; Chen, Y. Dpatch: An adversarial patch attack on object detectors. arXiv 2018, arXiv:1806.02299. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Michael, K.; Fang, J.; Zeng, Y.; Wong, C.; Montes, D.; et al. ultralytics/yolov5: V7.0-yolov5 sota realtime instance segmentation. Zenodo 2022. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014, Proceedings, Part V 13; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. arXiv 2017, arXiv:1706.06083. [Google Scholar]
- Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting Adversarial Attacks with Momentum. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, NY, USA, 2018; pp. 9185–9193. [Google Scholar]
- Dziugaite, G.K.; Ghahramani, Z.; Roy, D.M. A study of the effect of jpg compression on adversarial images. arXiv 2016, arXiv:1608.00853. [Google Scholar]
- Yu, C.; Chen, J.; Xue, Y.; Liu, Y.; Wan, W.; Bao, J.; Ma, H. Defending Against Universal Adversarial Patches by Clipping Feature Norms. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; IEEE: New York, NY, USA, 2021; pp. 16434–16442. [Google Scholar]
- Xu, W.; Evans, D.; Qi, Y. Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. arXiv 2017, arXiv:1704.01155. [Google Scholar]
- Liu, J.; Levine, A.; Lau, C.P.; Chellappa, R.; Feizi, S. Segment and Complete: Defending Object Detectors Against Adversarial Patch Attacks with Robust Patch Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; IEEE: New York, NY, USA, 2022; pp. 14973–14982. [Google Scholar]
- Cai, J.; Chen, S.; Li, H.; Xia, B.; Mao, Z.; Yuan, W. HARP: Let Object Detector Undergo Hyperplasia to Counter Adversarial Patches. In Proceedings of the 31st ACM International Conference on Multimedia; ACM: New York, NY, USA, 2023; pp. 2673–2683. [Google Scholar]
- Brown, T.B.; Mané, D.; Roy, A.; Abadi, M.; Gilmer, J. Adversarial Patch. arXiv 2017, arXiv:1712.09665. [Google Scholar]
Dataset | Method | Clean (%) | Non-APT (%) | APT (%) | |||
---|---|---|---|---|---|---|---|
PGD | MIM | PGD | MIM | PGD | MIM | ||
VOC | Undefended | 82.4 | 82.4 | 31.0 | 33.5 | 31.0 | 33.5 |
AT | 82.4 | 82.4 | 75.0 | 75.0 | 75.0 | 75.0 | |
JPEG | 80.4 | 80.2 | 43.7 | 38.6 | 43.7 | 38.6 | |
FNC | 77.6 | 77.6 | 29.4 | 31.1 | 53.8 | 55.5 | |
SAC | 82.5 | 82.6 | 61.8 | 45.6 | 75.2 | 76.9 | |
HARP | 82.5 | 82.6 | 74.3 | 75.4 | 76.7 | 76.9 | |
Method (ours) | 82.4 | 82.4 | 80.8 | 81.0 | 81.1 | 80.7 | |
COCO | Undefended | 67.8 | 67.8 | 33.6 | 33.6 | 33.6 | 33.5 |
AT | 64.8 | 64.8 | 56.8 | 56.4 | 56.5 | 56.2 | |
JPEG | 64.0 | 64.0 | 48.8 | 46.6 | 51.8 | 50.6 | |
FNC | 62.5 | 62.5 | 40.8 | 40.6 | 46.6 | 46.8 | |
SAC | 67.8 | 67.8 | 56.9 | 56.8 | 57.6 | 57.6 | |
HARP | 67.8 | 67.8 | 56.1 | 57.3 | 58.1 | 58.6 | |
Method (ours) | 67.8 | 67.8 | 61.1 | 60.5 | 61.4 | 61.2 |
Dataset | APT-PGD Attack FID | PGD Unseen Attack FID |
---|---|---|
COCO | 45.67 | 38.67 |
VOC | 39.95 | 30.87 |
Dataset | Method | Attack (%) | Defense (%) |
---|---|---|---|
COCO | Undefended | 67.8 | 67.8 |
DPatch | 48.1 | 59.9 | |
Adversarial Patch | 45.1 | 60.5 | |
MIM | 44.8 | 62.4 | |
PGD | 40.4 | 62.1 |
Size of Method | Random Mosaic | Gray Scale | White | Black |
---|---|---|---|---|
10 × 10 | 59.6 | 59.6 | 59.7 | 59.6 |
15 × 15 | 59.7 | 60.6 | 60.1 | 59.9 |
20 × 20 | 60.6 | 59.6 | 61.0 | 59.6 |
25 × 25 | 58.6 | 58.2 | 58.5 | 58.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, X.; Zhang, Q.; Cui, S.; Ying, Z.; Sun, J.; Du, X. Mitigating Adversarial Attacks in Object Detection through Conditional Diffusion Models. Mathematics 2024, 12, 3093. https://doi.org/10.3390/math12193093
Ye X, Zhang Q, Cui S, Ying Z, Sun J, Du X. Mitigating Adversarial Attacks in Object Detection through Conditional Diffusion Models. Mathematics. 2024; 12(19):3093. https://doi.org/10.3390/math12193093
Chicago/Turabian StyleYe, Xudong, Qi Zhang, Sanshuai Cui, Zuobin Ying, Jingzhang Sun, and Xia Du. 2024. "Mitigating Adversarial Attacks in Object Detection through Conditional Diffusion Models" Mathematics 12, no. 19: 3093. https://doi.org/10.3390/math12193093
APA StyleYe, X., Zhang, Q., Cui, S., Ying, Z., Sun, J., & Du, X. (2024). Mitigating Adversarial Attacks in Object Detection through Conditional Diffusion Models. Mathematics, 12(19), 3093. https://doi.org/10.3390/math12193093