A Study of Some New Hermite–Hadamard Inequalities via Specific Convex Functions with Applications
Abstract
:1. Introduction
2. Main Results
3. Applications to Special Means
- (a)
- Arithmetic mean:
- (b)
- Logarithmic mean:
- (c)
- The generalized logarithmic mean:
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; Springer: Berlin, Germany, 2013; Volume 2. [Google Scholar]
- Trujillo, J.J.; Scalas, E.; Diethelm, K.; Baleanu, D. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2016; Volume 5, p. 417. [Google Scholar]
- Anastassiou, G.A. Generalized Fractional Calculus; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2021; p. 305. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv 2016, arXiv:1602.03408. [Google Scholar] [CrossRef]
- Okubo, S.; Isihara, A. Inequality for convex functions in quantum-statistical mechanics. Physica 1972, 59, 228–240. [Google Scholar] [CrossRef]
- Pecaric, J.E.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Krishna, V.; Maenner, E. Convex potentials with an application to mechanism design. Econometrica 2001, 69, 1113–1119. [Google Scholar] [CrossRef]
- Murota, K.; Tamura, A. New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities. Discret. Appl. Math. 2003, 131, 495–512. [Google Scholar] [CrossRef]
- Nasir, J.; Qaisar, S.; Qayyum, A.; Budak, H. New results on Hermite-Hadamard type inequalities via Caputo-Fabrizio fractional integral for s-convex function. Filomat 2023, 37, 4943–4957. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.S. Inequalities of Hermite-Hadamard’s Type for Functions Whose Derivatives Absolute Values Are Quasi-Convex; Research Report Collection; Victoria University: Melbourne, Australia, 2009. [Google Scholar]
- Budak, H.; Ali, M.A.; Alp, N.; Awais, H.M. Some new q-Hermite-Hadamard type inequalities for the product of convex functions. J. Interdiscip. Math. 2022, 25, 2141–2166. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Filiz, H.; Kiris, M.E. On some generalized integral inequalities for Riemann-Liouville fractional integrals. Filomat 2015, 29, 1307–1314. [Google Scholar] [CrossRef]
- Xi, B.Y.; Qi, F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J. Funct. Spaces 2012, 2012, 980438. [Google Scholar] [CrossRef]
- Özcan, S.; İşcan, İ. Some new Hermite-Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019, 2019, 201. [Google Scholar] [CrossRef]
- Serap, Ö. Hermite–Hadamard type inequalities for m-convex and(α,m)-convex functions. J. Inequal. Appl. 2020, 2020, 175. [Google Scholar]
- Adil Khan, M.; Iqbal, A.; Suleman, M.; Chu, Y.M. Hermite-Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, 2018, 161. [Google Scholar] [CrossRef]
- Sezer, S. The Hermite-Hadamard inequality for s-Convex functions in the third sense. Aims Math 2021, 6, 7719–7732. [Google Scholar] [CrossRef]
- Samraiz, M.; Malik, M.; Naheed, S.; Rahman, G.; Nonlaopon, K. Hermite-Hadamard-type inequalities via different convexities with applications. J. Inequal. Appl. 2023, 2023, 70. [Google Scholar] [CrossRef]
- Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequal. Appl. 2020, 2020, 82. [Google Scholar] [CrossRef]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- İşcan, İ. New refinements for integral and sum forms of Hölder inequality. J. Inequal. Appl. 2019, 2019, 304. [Google Scholar] [CrossRef]
- Wang, X.; Saleem, M.S.; Aslam, K.N.; Wu, X.; Zhou, T. On Caputo-Fabrizio fractional integral inequalities of Hermite-Hadamard type for modified h-convex functions. J. Math. 2020, 2020, 8829140. [Google Scholar] [CrossRef]
- Butt, S.I.; Nadeem, M.; Farid, G. On Caputo fractional derivatives via exponential (s,m)-convex functions. Eng. Appl. Sci. Lett. 2020, 3, 32–39. [Google Scholar]
- Abbasi, A.M.K.; Anwar, M. Hermite-Hadamard inequality involving Caputo-Fabrizio fractional integrals and related inequalities via s-convex functions in the second sense. AIMS Math. 2022, 7, 18565–18575. [Google Scholar] [CrossRef]
- Li, Q.; Saleem, M.S.; Yan, P.; Zahoor, M.S.; Imran, M. On strongly convex functions via Caputo-Fabrizio-type fractional integral and some applications. J. Math. 2021, 2021, 6625597. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New fractional integral inequalities for convex functions pertaining to Caputo–Fabrizio operator. Fractal Fract. 2022, 6, 171. [Google Scholar] [CrossRef]
- Xi, B.Y.; Qi, F. Some inequalities of Hermite-Hadamard type for h-convex functions. Adv. Inequal. Appl. 2013, 2, 1–15. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junjua, M.-u.-D.; Qayyum, A.; Munir, A.; Budak, H.; Saleem, M.M.; Supadi, S.S. A Study of Some New Hermite–Hadamard Inequalities via Specific Convex Functions with Applications. Mathematics 2024, 12, 478. https://doi.org/10.3390/math12030478
Junjua M-u-D, Qayyum A, Munir A, Budak H, Saleem MM, Supadi SS. A Study of Some New Hermite–Hadamard Inequalities via Specific Convex Functions with Applications. Mathematics. 2024; 12(3):478. https://doi.org/10.3390/math12030478
Chicago/Turabian StyleJunjua, Moin-ud-Din, Ather Qayyum, Arslan Munir, Hüseyin Budak, Muhammad Mohsen Saleem, and Siti Suzlin Supadi. 2024. "A Study of Some New Hermite–Hadamard Inequalities via Specific Convex Functions with Applications" Mathematics 12, no. 3: 478. https://doi.org/10.3390/math12030478
APA StyleJunjua, M. -u. -D., Qayyum, A., Munir, A., Budak, H., Saleem, M. M., & Supadi, S. S. (2024). A Study of Some New Hermite–Hadamard Inequalities via Specific Convex Functions with Applications. Mathematics, 12(3), 478. https://doi.org/10.3390/math12030478