Displacement Prediction Method for Bank Landslide Based on SSA-VMD and LSTM Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Temporal Addition Model
2.2. VMD
2.3. SSA-VMD
2.4. LSTM
2.5. Evaluation Indicators
3. Results
3.1. A Real Case
3.2. Landslide Displacement Sequence Decomposition Results
3.2.1. VMD Parameter Optimization
3.2.2. Cumulative Displacement Decomposition Results
3.3. Landslide Displacement Prediction Results
3.3.1. Result of Trend Item
3.3.2. Result of Periodic Item
- (1)
- Selection of Impact Factors
- (2)
- Result of Periodic Displacement
3.3.3. Result of Random Item
3.3.4. Result of Cumulative Displacement
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Depina, I.; Oguz, E.A.; Thakur, V. Novel Bayesian framework for calibration of spatially distributed physical-based landslide prediction models. Comput. Geotech. 2020, 125, 103660. [Google Scholar] [CrossRef]
- Li, S.H.; Wu, L.Z.; Chen, J.J.; Huang, R.Q. Multiple data-driven approach for predicting landslide deformation. Landslides 2020, 17, 709–718. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhao, Y.J. Time Series Prediction Model of Landslide Displacement Using Mean-Based Low-Rank Autoregressive Tensor Completion. Appl. Sci. 2023, 13, 5214. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Guo, D.; Lacasse, S.; Li, J.H.; Yang, B.B.; Choi, J.C. Algorithms for intelligent prediction of landslide displacements. J. Zhejiang Univ.-Sci. A 2020, 21, 412–429. [Google Scholar] [CrossRef]
- Huang, F.M.; Ye, Z.; Jiang, S.H.; Huang, J.S.; Chang, Z.L.; Chen, J.W. Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models. Catena 2021, 202, 105250. [Google Scholar] [CrossRef]
- Jiang, Y.N.; Xu, Q.; Lu, Z.; Luo, H.Y.; Liao, L.; Dong, X.J. Modelling and predicting landslide displacements and uncertainties by multiple machine-learning algorithms: Application to Baishuihe landslide in Three Gorges Reservoir, China. Geomat. Nat. Hazards Risk 2021, 12, 741–762. [Google Scholar] [CrossRef]
- Saito, M. Forecasting the time of occurrence of a slope failure. In Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, Montreal, QC, Canada, 8–15 September 1965; pp. 537–541. [Google Scholar]
- Mufundirwa, A.; Fujii, Y.; Kodama, J. A new practical method for prediction of geomechanical failure-time. Int. J. Rock Mech. Min. Sci. 2010, 47, 1079–1090. [Google Scholar] [CrossRef]
- Helmstetter, A.; Sornette, D.; Grasso, J.R.; Andersen, J.V.; Gluzman, S.; Pisarenko, V. Slider block friction model for landslides: Application to Vaiont and La Clapiere landslides. J. Geophys. Res. Solid Earth 2004, 109. [Google Scholar] [CrossRef]
- Cascini, L.; Scoppettuolo, M.R.; Babilio, E. Forecasting the landslide evolution: From theory to practice. Landslides 2022, 19, 2839–2851. [Google Scholar] [CrossRef]
- Miao, S.J.; Hao, X.; Guo, X.L.; Wang, Z.M.; Liang, M.C. Displacement and landslide forecast based on an improved version of Saito’s method together with the Verhulst-Grey model. Arab. J. Geosci. 2017, 10, 53. [Google Scholar] [CrossRef]
- Liu, L.L.; Yin, H.D.; Xiao, T.; Huang, L.; Cheng, Y.M. Dynamic prediction of landslide life expectancy using ensemble system incorporating classical prediction models and machine learning. Geosci. Front. 2024, 15, 101758. [Google Scholar] [CrossRef]
- Wu, L.Z.; Li, S.H.; Huang, R.Q.; Xu, Q. A new grey prediction model and its application to predicting landslide displacement. Appl. Soft Comput. 2020, 95, 106543. [Google Scholar] [CrossRef]
- Li, S.H.; Zhu, L.; Wu, Y.; Lei, X.Q. A novel grey multivariate model for forecasting landslide displacement. Eng. Appl. Artif. Intell. 2021, 103, 104297. [Google Scholar] [CrossRef]
- Wang, Y.K.; Tang, H.M.; Wen, T.; Ma, J.W. A hybrid intelligent approach for constructing landslide displacement prediction intervals. Appl. Soft Comput. 2019, 81, 105506. [Google Scholar] [CrossRef]
- Huang, F.M.; Yin, K.L.; Zhang, G.R.; Gui, L.; Yang, B.B.; Liu, L. Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory. Environ. Earth Sci. 2016, 75, 1376. [Google Scholar] [CrossRef]
- Zhang, L.G.; Chen, X.Q.; Zhang, Y.G.; Wu, F.W.; Chen, F.; Wang, W.T.; Guo, F. Application of GWO-ELM Model to Prediction of Caojiatuo Landslide Displacement in the Three Gorge Reservoir Area. Water 2020, 12, 1860. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.L.; Cao, Y.; Intrieri, E.; Ahmed, B.; Catani, F. Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method. Landslides 2018, 15, 2211–2225. [Google Scholar] [CrossRef]
- Li, Y.Y.; Sun, R.L.; Yin, K.L.; Xu, Y.; Chai, B.; Xiao, L.L. Forecasting of landslide displacements using a chaos theory based wavelet analysis-Volterra filter model. Sci. Rep. 2019, 9, 19853. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.D.; Qi, Y.; Cai, Z.L.; Tian, B.; Yuan, C.W.; Zhang, X.Y.; Zuo, Q.J. Dynamic forecast model for landslide displacement with step-like deformation by applying GRU with EMD and error correction. Bull. Eng. Geol. Environ. 2023, 82, 211. [Google Scholar] [CrossRef]
- Shihabudheen, K.V.; Peethambaran, B. Landslide displacement prediction technique using improved neuro-fuzzy system. Arab. J. Geosci. 2017, 10, 502. [Google Scholar] [CrossRef]
- Niu, X.X.; Ma, J.W.; Wang, Y.K.; Zhang, J.R.; Chen, H.J.; Tang, H.M. A Novel Decomposition-Ensemble Learning Model Based on Ensemble Empirical Mode Decomposition and Recurrent Neural Network for Landslide Displacement Prediction. Appl. Sci. 2021, 11, 4684. [Google Scholar] [CrossRef]
- Yao, H.Y.; Song, G.L.; Li, Y.B. Displacement Prediction of Channel Slope Based on EEMD-IESSA-LSSVM Combined Algorithm. Appl. Sci. 2023, 13, 9582. [Google Scholar] [CrossRef]
- Bai, D.X.; Lu, G.Y.; Zhu, Z.Q.; Tang, J.T.; Fang, J.; Wen, A.X. Using time series analysis and dual-stage attention-based recurrent neural network to predict landslide displacement. Environ. Earth Sci. 2022, 81, 509. [Google Scholar] [CrossRef]
- Guo, W.; Meng, Q.J.; Wang, X.; Zhang, Z.T.; Yang, K.; Wang, C.H. Landslide Displacement Prediction Based on Variational Mode Decomposition and GA-Elman Model. Appl. Sci. 2023, 13, 450. [Google Scholar] [CrossRef]
- Qi, Y.L.; Bai, L.; Hou, T.; Huang, P.P.; Tan, W.X.; Xu, W. Application of Displacement Prediction Method Based on Displacement Increment and CS-BP Neural Network in Mine Landslide. Prog. Electromagn. Res. Lett. 2023, 113, 69–79. [Google Scholar] [CrossRef]
- Wang, G.; Fang, Z.; Xie, J.R.; Du, N. Development of a Hybrid Method to Predict the Slope Surface Deformation Utilizing the Time Series and GA-Elman Models. Adv. Civ. Eng. 2021, 2021, 6642456. [Google Scholar] [CrossRef]
- Li, L.M.; Cheng, S.K.; Wen, Z.Z. Landslide prediction based on improved principal component analysis and mixed kernel function least squares support vector regression model. J. Mt. Sci. 2021, 18, 2130–2142. [Google Scholar] [CrossRef]
- Zhou, S.T.; Yao, Y.K.; Luo, X.D.; Jiang, N.; Niu, S.S. Dynamic Response Evaluation for Single-Hole Bench Carbon Dioxide Blasting Based on the Novel SSA-VMD-PCC Method. Int. J. Geomech. 2023, 23, 04022248. [Google Scholar] [CrossRef]
- Li, Y.; Fu, P.; Ji, W.F.; Shi, S.W.; Zhang, Y.; Zhang, T. Predictive method of nonlinear system based on artificial neural network and SVM. Oxid. Commun. 2016, 39, 1226–1235. [Google Scholar]
- Zhou, C.; Yin, K.L.; Cao, Y.; Ahmed, B. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China. Eng. Geol. 2016, 204, 108–120. [Google Scholar] [CrossRef]
- Guo, Z.Z.; Chen, L.X.; Gui, L.; Du, J.; Yin, K.L.; Do, H.M. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model. Landslides 2020, 17, 567–583. [Google Scholar] [CrossRef]
- Miao, F.S.; Wu, Y.P.; Xie, Y.H.; Li, Y.N. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslides 2018, 15, 475–488. [Google Scholar] [CrossRef]
- Lin, Z.; Ji, Y.F.; Liang, W.B.; Sun, X.Y. Landslide Displacement Prediction Based on Time-Frequency Analysis and LMD-BiLSTM Model. Mathematics 2022, 10, 2203. [Google Scholar] [CrossRef]
- Lin, Z.A.; Sun, X.Y.; Ji, Y.F. Landslide Displacement Prediction Model Using Time Series Analysis Method and Modified LSTM Model. Electronics 2022, 11, 1519. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Tang, A.D.; Zhou, H.; Han, T.; Xie, L. A Chaos Sparrow Search Algorithm with Logarithmic Spiral and Adaptive Step for Engineering Problems. Cmes-Comput. Model. Eng. Sci. 2022, 130, 331–364. [Google Scholar] [CrossRef]
- Wu, L.M.; Wang, Z. Three Gorges Reservoir Water Level Fluctuation Influents on the Stability of the Slope’s Analysis. Adv. Mater. Res. 2013, 739, 283–286. [Google Scholar] [CrossRef]
- He, K.Q.; Zhao, M.; Zhang, Y.J.; Zhang, J.X. Unload-load displacement response ratio parameter and its application in prediction of debris landslide induced by rainfall. Environ. Earth Sci. 2017, 76, 55. [Google Scholar] [CrossRef]
- Du, J.; Yin, K.L.; Lacasse, S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China. Landslides 2013, 10, 203–218. [Google Scholar] [CrossRef]
Impact Factor | Relatedness |
---|---|
Change in reservoir water level during current month | 0.89 |
Change in reservoir water level during two-month period | 0.89 |
Change in displacement during current month | 0.87 |
Change in displacement during two-month period | 0.85 |
Change in rainfall during current month | 0.78 |
Change in rainfall during two-month period | 0.65 |
Average reservoir water level elevation during current month | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Huang, Y. Displacement Prediction Method for Bank Landslide Based on SSA-VMD and LSTM Model. Mathematics 2024, 12, 1001. https://doi.org/10.3390/math12071001
Xie X, Huang Y. Displacement Prediction Method for Bank Landslide Based on SSA-VMD and LSTM Model. Mathematics. 2024; 12(7):1001. https://doi.org/10.3390/math12071001
Chicago/Turabian StyleXie, Xuebin, and Yingling Huang. 2024. "Displacement Prediction Method for Bank Landslide Based on SSA-VMD and LSTM Model" Mathematics 12, no. 7: 1001. https://doi.org/10.3390/math12071001
APA StyleXie, X., & Huang, Y. (2024). Displacement Prediction Method for Bank Landslide Based on SSA-VMD and LSTM Model. Mathematics, 12(7), 1001. https://doi.org/10.3390/math12071001