Next Article in Journal
Improving Support Vector Regression for Predicting Mechanical Properties in Low-Alloy Steel and Comparative Analysis
Previous Article in Journal
On Inner Derivations of Leibniz Algebras
Previous Article in Special Issue
Metric Relations in the Fuzzy Right Triangle
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fixed Point Results in Modified Intuitionistic Fuzzy Soft Metric Spaces with Application

1
Department of Mathematics, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India
2
Department of Mathematics, M.D.S.D. College, Ambala City 134003, Haryana, India
3
Department of Mathematical Sciences and Computing, Walter Sisulu University, Mthatha 5117, South Africa
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2024, 12(8), 1154; https://doi.org/10.3390/math12081154
Submission received: 23 February 2024 / Revised: 29 March 2024 / Accepted: 7 April 2024 / Published: 11 April 2024
(This article belongs to the Special Issue Novel Approaches in Fuzzy Sets and Metric Spaces)

Abstract

:
This paper establishes a new type of space, modified intuitionistic fuzzy soft metric space (MIFSMS). Basic properties and topological structures are defined in the setting of this new notion with valid examples. Moreover, we have given some new results along with suitable examples to show their validity. An application for finding the solution of an integral equation is also given by utilizing our newly developed results.

1. Introduction

The concept of vagueness came into existence when it was difficult for the interval mathematics to solve problems with different uncertainties. To tackle with such issues, Zadeh [1] gave fuzzy sets (FS) that were very well defined by using the indicator function. Many properties and important results are given in [1] that build a new field for the researchers to explore. Thereafter, K.T. Atanassov [2] presented an intuitionistic fuzzy set (IFS) consisting of membership and non membership functions as well.
Experiments solving issues in economics, engineering, environmental science, sociology, medical science and many other fields deal with the complex problems of modeling uncertain data. While some mathematical theories such as “probability theory, fuzzy set theory, rough set theory, vague set theory and the interval mathematics” are practical in defining uncertainty, each of these concepts has their own drawbacks. Further, in case of data containing parameters, Molodtsov [3] gave the concept of soft sets to deal with the uncertainties. Soft sets have applications in several fields including the “smoothness of functions, game theory, operations research, Riemann integration, Perron integration, probability theory and measurement theory”. Especially, it has been very well applied to soft decision making problems. Das and Samanta [4,5,6] applied the concept of soft sets to metric spaces (MS) and hence presented Soft Metric Spaces (SMS) using soft points of soft sets. Maji et al. [7] in 2001 introduced Fuzzy Soft Sets. Beaula and Gunaseli [8] applied the MS concept to Fuzzy Soft Sets and hence introduced Fuzzy Soft Metric Spaces (FSMS) using a fuzzy soft point and defined some of its characteristics. See also [9,10,11]. Saadiat et al. [12] gave a vital concept of Modified Intuitionistic Fuzzy Metric Spaces (MIFMS) by availing the continuous t-representable norm.

2. Preliminaries

In the given section, χ denotes the universe, Ω depicts the parameter set, Ω ¯ represents the absolute soft set, and S P ( χ ¯ ) denotes the set consisting of all the soft points of χ ¯ .
Definition 1 
([3]). A 2-tuple ( Δ , Ω ) depicts a soft set on a universe χ where Ω represents the parameter set and Δ denotes the map from Ω to power set of χ, i.e., Δ : Ω P ( χ ) .
Definition 2 
([7]). A soft set ( Δ , Ω ) is an absolute soft set if Δ ( ι ) = χ for every ι Ω .
Definition 3 
([7]). A soft point is a soft set ( Δ , Ω ) if Δ ( ι ) = { κ } for any κ χ and Δ ( λ ) = ϕ for λ χ / { ι } .
Definition 4 
([4,5]). A 3-tuple  ( χ ¯ , ρ ¯ , Ω )  denotes a SMS, where  ρ ¯ : S P ( χ ¯ ) × S P ( χ ¯ ) R ( Ω )  is the soft metric and  R ( Ω )  is the set having non-negative soft real numbers with  ρ ¯  satisfying the given assertions for all  ι ¯ e 1 , κ ¯ e 2 , λ ¯ e 3 S P ( χ ¯ ) :
(i) 
ρ ¯ ( ι ¯ e 1 , κ ¯ e 2 ) > 0 ¯ ;
(ii) 
ρ ¯ ( ι ¯ e 1 , κ ¯ e 2 ) = 0 ¯ iff ι ¯ e 1 = κ ¯ e 2 ;
(iii) 
ρ ¯ ( ι ¯ e 1 , κ ¯ e 2 ) = ρ ¯ ( κ ¯ e 2 , ι ¯ e 1 ) ;
(iv) 
ρ ¯ ( ι ¯ e 1 , κ ¯ e 2 ) ρ ¯ ( ι ¯ e 1 , λ ¯ e 3 ) + ρ ¯ ( λ ¯ e 3 , κ ¯ e 2 ) .
Definition 5 
([7]). A 2-tuple ( Δ , Ω ) over a universe χ is a fuzzy soft set, where Ω represents the parameter set and Δ is the map from Ω to F ( χ ) which is the set having fuzzy subsets in universe χ, i.e., Δ : Ω F ( χ ) .
Definition 6 
([8]). A 3-tuple  ( χ ¯ , Δ , )  is a soft fuzzy metric space (SFMS), where SFM on  χ ¯  is given by map  Δ : S P ( χ ¯ ) × S P ( χ ¯ ) × ( 0 , ) [ 0 , 1 ]  satisfying the below assertions for all  ι ¯ e 1 , κ ¯ e 2 , λ ¯ e 3 S P ( χ ¯ )  and  ρ , ϱ > 0 :
(i) 
Δ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) > 0 ;
(ii) 
Δ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) = 1 iff ι ¯ e 1 = κ ¯ e 2 ;
(iii) 
Δ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) = Δ ( κ ¯ e 2 , ι ¯ e 1 , ϱ ) ;
(iv) 
Δ ( ι ¯ e 1 , κ ¯ e 2 , ϱ + ρ ) Δ ( ι ¯ e 1 , λ ¯ e 3 , ϱ ) Δ ( λ ¯ e 3 , κ ¯ e 2 , ρ ) ;
(v) 
Δ ( ι ¯ e 1 , κ ¯ e 2 , . ) : ( 0 , ) [ 0 , 1 ] is continuous.
Definition 7 
([12]). A 3-tuple  ( χ , M ω , ψ , τ )  is a MIFMS, where χ is an arbitrary set,  ω , ψ  depicts the fuzzy sets from  χ 2 × ( 0 , )  to  [ 0 , 1 ]  asserting  ω ( ι , κ , ϱ ) + ψ ( ι , κ , ϱ ) 1  for every  ι , κ χ  and  ϱ > 0 , continuous t-representable norm is denoted by τ and  M ω , ψ  depicts a map  χ 2 × ( 0 , ) L *  that satisfies the below assertions for every  ι , κ , λ χ  and  ρ , ϱ > 0 :
(i) 
M ω , ψ ( ι , κ , ϱ ) > L * 0 L * ;
(ii) 
M ω , ψ ( ι , κ , ϱ ) = 1 L *  iff  ι = κ ;
(iii) 
M ω , ψ ( ι , κ , ϱ ) = M ω , ψ ( κ , ι , ϱ ) ;
(iv) 
M ω , ψ ( ι , κ , ϱ + ρ ) L * τ ( M ω , ψ ( ι , λ , ϱ ) , M ω , ψ ( λ , κ , ρ ) ) ;
(v) 
M ω , ψ ( ι , κ , . ) : ( 0 , ) L *  is continuous.
Here, MIFM  M ω , ψ  is given as
M ω , ψ ( ι , κ , ϱ ) = ( ω ( ι , κ , ϱ ) , ψ ( ι , κ , ϱ ) ) .

3. Modified Intuitionistic Fuzzy Soft Metric Space

Definition 8 
([13]). A map Θ on  L * , Θ : ( L * ) 2 L *  represents a triangular norm  ( t n o r m )  if it satisfies the below assertions:
(i) 
Θ ( ι , 1 L * ) = ι , for all  ι L * ;
(ii) 
Θ ( ι , κ ) = Θ ( κ , ι ) , for all  ( ι , κ ) ( L * ) 2 ;
(iii) 
Θ ( ι , Θ ( κ , λ ) ) = Θ ( Θ ( ι , κ ) , λ ) , for all  ( ι , κ , λ ) ( L * ) 3 ;
(iv) 
ι ι  and  κ κ Θ ( ι , κ ) L * Θ ( ι , κ )  , for all  ( ι , ι , κ , κ ) ( L * ) 4 .
Definition 9 
([13]). A continuous t-representable norm is a continuous  t n o r m Θ on  L *  if it implies the existence of a  t c o n o r m on  [ 0 , 1 ]  which is continuous so that
Θ ( ι , κ ) = ( ι 1 κ 1 , ι 2 κ 2 )
for every  ι = ( ι 1 , ι 2 ) ,  κ = ( κ 1 , κ 2 ) L * .
Definition 10. 
A 3-tuple  ( χ ¯ , M ω , ψ , Θ )  is a MIFSMS, where  χ ¯  is any set, ω and ψ are SFS, Θ denotes a t-representable norm possessing continuity and  M ω , ψ  represents a map from  S P ( χ ¯ ) × S P ( χ ¯ ) × ( 0 , )  to  L *  fulfilling the below assertions for all  ι ¯ e 1 , κ ¯ e 2 , λ ¯ e 3 S P ( χ ¯ )  and  ρ , ϱ > 0 :
(i) 
M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) > L * 0 L * ;
(ii) 
M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) = 1 L *  iff  ι ¯ e 1 = κ ¯ e 2 ;
(iii) 
M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) = M ω , ψ ( κ ¯ e 2 , ι ¯ e 1 , ϱ ) ;
(iv) 
M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ + ρ ) L * Θ ( M ω , ψ ( ι ¯ e 1 , λ ¯ e 3 , ϱ ) , M ω , ψ ( λ ¯ e 3 , κ ¯ e 2 , ρ ) ) ;
(v) 
M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , . ) : ( 0 , ) L *  is continuous.
Then,  M ω , ψ  is MIFSM on  χ ¯  where level of closeness and non closeness between  ι ¯ e 1 , κ ¯ e 2  w.r.t. ϱ is depicted by the functions  ω ( ι ¯ e 1 , κ ¯ e 2 , ϱ )  and  ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ )  respectively and metric  M ω , ψ  is given as
M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) = ( ω ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) ) .
Remark 1. 
The function ω ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) is increasing and the function ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) is decreasing in a MIFSMS, for every ι ¯ e 1 , κ ¯ e 2 S P ( χ ¯ ) .
Example 1. 
Take ( χ ¯ , d ) a SMS and ω , ψ soft fuzzy sets on S P ( χ ¯ ) × S P ( χ ¯ ) × ( 0 , ) given as below:
M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) = ( ω ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) ) = ( h ϱ n h ϱ n + m d ( ι ¯ e 1 , κ ¯ e 2 ) , m d ( ι ¯ e 1 , κ ¯ e 2 ) h ϱ n + m d ( ι ¯ e 1 , κ ¯ e 2 ) )
for all h , ϱ , m , n R + ; Θ ( r ¯ , s ¯ ) = ( r ¯ 1 s ¯ 1 , m i n ( r ¯ 2 + s ¯ 2 , 1 ) ) , where r ¯ = ( r ¯ 1 , r ¯ 2 ) and s ¯ = ( s ¯ 1 , s ¯ 2 ) L * . Then, 3-tuple ( χ ¯ , M ω , ψ , Θ ) is a MIFSMS.
Example 2. 
Consider χ = N . Define Θ ( ȷ ¯ , ¯ ) = ( m a x { 0 , ȷ 1 ¯ + 1 ¯ 1 } , ȷ 2 ¯ + 2 ¯ ȷ 2 ¯ 2 ¯ ) , where ȷ ¯ = ( ȷ 1 ¯ , ȷ 2 ¯ ) and ¯ = ( 1 ¯ , 2 ¯ ) L * . Take ω , ψ be soft fuzzy sets on S P ( χ ¯ ) × S P ( χ ¯ ) × ( 0 , ) given as M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) = ( ω ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) )
M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) = ( ι ¯ e 1 κ ¯ e 2 , κ ¯ e 2 ι ¯ e 1 κ ¯ e 2 ) if ι ¯ e 1 κ ¯ e 2 ( κ ¯ e 2 ι ¯ e 1 , ι ¯ e 1 κ ¯ e 2 ι ¯ e 1 ) if κ ¯ e 2 ι ¯ e 1
for all ι ¯ e 1 , κ ¯ e 2 S P ( χ ¯ ) and ϱ > 0 . Then, 3-tuple ( χ ¯ , M ω , ψ , Θ ) is also a MIFSMS.
Lemma 1. 
Let ( χ ¯ , M ω , ψ , τ ) be MIFSMS. Then, M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) is increasing with respect to ϱ > 0 in ( L * , L * ) for every ι ¯ e 1 , κ ¯ e 2 S P ( χ ¯ ) .
Definition 11. 
Let ( χ ¯ , M ω , ψ , τ ) be MIFSMS. M ω , ψ possesses continuity on S P ( χ ¯ ) × S P ( χ ¯ ) × ( 0 , ) if
lim n M ω , ψ ( ι ¯ e n , κ ¯ e n , ϱ n ) = M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ )
where sequence { ( ι ¯ e n , κ ¯ e n , ϱ n ) } converges to ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) .
Lemma 2. 
For ( χ ¯ , M ω , ψ , τ ) be a MIFSMS, then M ω , ψ possesses continuity on S P ( χ ¯ ) × S P ( χ ¯ ) × ( 0 , ) .

4. Results and Discussion

Definition 12. 
An open ball in a MIFSMS ( χ ¯ , M ω , ψ , τ ) is depicted by B ( ι ¯ e 1 , ϵ , ϱ ) having center ι ¯ e 1 χ ¯ and radius 0 < ϵ < 1 for any ϱ > 0 and is given as,
B ( ι ¯ e 1 , ϵ , ϱ ) = { κ ¯ e 2 χ ¯ : M ω , ψ ( ι ¯ e 1 , κ ¯ e 2 , ϱ ) > L * ( N s ( ϵ ) , ϵ ) } .
Theorem 3. 
Every open ball B ( u ¯ e 1 , ϵ , ϱ ) in MIFSMS is an open set.
Proof. 
Take v ¯ e 2 B ( u ¯ e 1 , ϵ , ϱ ) , then M ω , ψ ( u ¯ e 1 , v ¯ e 2 , ϱ ) > L * ( N s ( ϵ ) , ϵ ) , so
ω ( u ¯ e 1 , v ¯ e 2 , ϱ ) > 1 ϵ , ψ ( u ¯ e 1 , v ¯ e 2 , ϱ ) < ϵ .
Since ω ( u ¯ e 1 , v ¯ e 2 , ϱ ) > 1 ϵ , there exists ϱ o ( 0 , ϱ ) so that ω ( u ¯ e 1 , v ¯ e 2 , ϱ o ) > 1 ϵ and ψ ( u ¯ e 1 , v ¯ e 2 , ϱ o ) < ϵ .
Put ϵ o = ω ( u ¯ e 1 , v ¯ e 2 , ϱ o ) .
Since ϵ o > 1 ϵ , then there exists η ( 0 , 1 ) so that ϵ 0 > 1 η > 1 ϵ .
Now, for given ϵ and η such that ϵ o > 1 η , there exist ϵ 1 , ϵ 2 ( 0 , 1 ) such that τ ( ϵ o , ϵ 1 ) > L * ( N s ( η ) , η ) , where ϵ o = ( ϵ o , 1 ϵ o ) and ϵ 1 = ( ϵ 1 , 1 ϵ 2 ) .
Let ϵ 3 = max { ϵ 1 , ϵ 2 } and open ball B ( v ¯ e 2 , 1 ϵ 3 , ϱ ϱ o ) .
Claim that B ( v ¯ e 2 , 1 ϵ 3 , ϱ ϱ o ) B ( u ¯ e 1 , ϵ , ϱ ) .
Consider w ¯ e 3 B ( v ¯ e 2 , 1 ϵ 3 , ϱ ϱ o ) , then M ω , ψ ( v ¯ e 2 , w ¯ e 3 , ϱ ϱ o ) > L * ( N s ( 1 ϵ 3 ) , ϵ 3 ) , so
ω ( v ¯ e 2 , w ¯ e 3 , ϱ ϱ o ) > ϵ 3 , ψ ( v ¯ e 2 , w ¯ e 3 , ϱ ϱ o ) < 1 ϵ 3 .
Now, M ω , ψ ( u ¯ e 1 , w ¯ e 3 , ϱ ) L * τ ( M ω , ψ ( u ¯ e 1 , v ¯ e 2 , ϱ o ) , M ω , ψ ( v ¯ e 2 , w ¯ e 3 , ϱ ϱ o ) ) L * ( N s ( ϵ ) , ϵ ) .
Thus, w ¯ e 3 B ( u ¯ e 1 , ϵ , ϱ ) . Hence, B ( v ¯ e 2 , 1 ϵ 3 , ϱ ϱ o ) B ( u ¯ e 1 , ϵ , ϱ ) . □
Remark 2. 
The topology generated by M ω , ψ on χ ¯ in MIFSMS ( χ ¯ , M ω , ψ , τ ) is given as
τ ω , ψ = { Y χ ¯ : for every u ¯ e 1 Y , there exist ϱ > 0 and ϵ ( 0 , 1 ) so that B ( u ¯ e 1 , ϵ , ϱ ) Y } .
Theorem 4. 
If ( χ ¯ , M ω , ψ , τ ) is a MIFSMS, then it is a Hausdorff space.
Proof. 
Given that ( χ ¯ , M ω , ψ , τ ) is MIFSMS, consider u ¯ e 1 , v ¯ e 2 χ ¯ be two distinct points, then
0 L * < L * M ω , ψ ( u ¯ e 1 , v ¯ e 2 , ϱ ) < L * 1 L * .
Let s 1 = ω ( u ¯ e 1 , v ¯ e 2 , ϱ ) , s 2 = ψ ( u ¯ e 1 , v ¯ e 2 , ϱ ) and s = max { s 1 , 1 s 2 } .
For each s 0 ( s , 1 ) , there exist s 3 , s 4 such that τ ( ( s 3 , 1 s 4 ) , ( s 3 , 1 s 4 ) ) L * ( N s ( 1 s 0 ) , s 0 ) .
Let s 5 = max { s 3 , s 4 } .
Consider two MIFSOBs B ( u ¯ e 1 , 1 s 5 , ϱ 2 ) and B ( v ¯ e 2 , 1 s 5 , ϱ 2 ) .
Claim that B ( u ¯ e 1 , 1 s 5 , t 2 ) B ( v ¯ e 2 , 1 s 5 , ϱ 2 ) = ϕ .
Let w ¯ e 3 B ( u ¯ e 1 , 1 s 5 , ϱ 2 ) B ( v ¯ e 2 , 1 s 5 , ϱ 2 ) .
( s 1 , s 2 ) = M ω , ψ ( u ¯ e 1 , v ¯ e 2 , ϱ ) L * τ ( M ω , ψ ( u ¯ e 1 , w ¯ e 3 , ϱ 2 ) , M ω , ψ ( w ¯ e 3 , v ¯ e 2 , ϱ 2 ) ) L * τ ( ( s 5 , 1 s 5 ) , ( s 5 , 1 s 5 ) ) L * ( N s ( 1 s 0 ) , s 0 ) > L * ( s 1 , s 2 ) ,
which is contrary. So ( χ ¯ , M ω , ψ , τ ) is a Hausdorff space. □
Definition 13. 
A subset Y of χ ¯ in a MIFSMS ( X ¯ , M ω , ψ , τ ) is called IF-bounded if it implies the existence of ϱ > 0 and 0 < ϵ < 1 so that M ω , ψ ( u ¯ e 1 , v ¯ e 2 , t ) > L * ( N s ( ϵ ) , ϵ ) for each u ¯ e 1 , v ¯ e 2 ∈ Y.
Theorem 5. 
If ( χ ¯ , M ω , ψ , τ ) is MIFSMS and Y χ ¯ is compact, then Y is IF-bounded.
Proof. 
Consider ϱ > 0 and 0 < ϵ < 1 .
Let { B ( u ¯ e 1 , ϵ , t ) : u e 1 ¯   Y } be an open cover of Y.
As Y is given to be compact, there exist u ¯ e 1 , u ¯ e 2 ,…, u ¯ e n Y such that Y     i = 1 n B ( u ¯ e i , ϵ , t ) .
Let u ¯ e 1 , v ¯ e 2 Y, then u ¯ e 1 B ( u ¯ e i , ϵ , ϱ ) and v ¯ e 2 B ( u ¯ e j , ϵ , ϱ ) for some i,j; then
M ω , ψ ( u ¯ e 1 , u ¯ e i , ϱ ) > L * ( N s ( ϵ ) , ϵ ) , M ω , ψ ( v ¯ e 2 , u ¯ e j , ϱ ) > L * ( N s ( ϵ ) , ϵ ) .
Let α = m a x { ω ( u ¯ e i , u ¯ e j , ϱ ) : 1 i , j p } and β = m a x { ψ ( u ¯ e i , u ¯ e j , ϱ ) : 1 i , j p } .
Then, α , β > 0 .
Now,
M ω , ψ ( u ¯ e 1 , v ¯ e 2 , 3 ϱ ) > L * τ 2 ( M ω , ψ ( u ¯ e 1 , u ¯ e i , ϱ ) , M ω , ψ ( u ¯ e i , u ¯ e j , ϱ ) , M ω , ψ ( u ¯ e j , v ¯ e 2 , ϱ ) ) L * τ 2 ( ( 1 ϵ , ϵ ) , ( α , β ) , ( 1 ϵ , ϵ ) ) > L * ( N s ( η 1 ) , N s ( η 2 ) )
for some 0 < η 1 , η 2 < 1 .
Let η = m a x { η 1 , η 2 } and ϱ = 3 ϱ , then M ω , ψ ( u ¯ e 1 , v ¯ e 2 , ϱ ) > L * ( N s ( η ) , η ) for all u ¯ e 1 , v ¯ e 2 Y .
Hence, Y is IF-bounded. □
Theorem 6. 
If ( χ ¯ , M ω , ψ , τ ) is a MIFSMS and τ ω , ψ is a topology on χ ¯ , then u ¯ e n u ¯ e 1 if
l t n M ω , ψ ( u ¯ e n , u ¯ e 1 , ϱ ) = 1 L *
for u ¯ e n in χ ¯ .
Proof. 
Take ϱ > 0 .
Consider u ¯ e n u ¯ e 1 , then there exists n 0 N so that u ¯ e n B ( u ¯ e 1 , ϵ , ϱ ) for all n n 0 , ϵ ( 0 , 1 ) ; then, M ω , ψ ( u ¯ e n , u ¯ e 1 , ϱ ) > L * ( N s ( ϵ ) , ϵ ) .
Hence, l t n M ω , ψ ( u ¯ e n , u ¯ e 1 , ϱ ) = 1 L * .
Conversely, let l t n M ω , ψ ( u ¯ e n , u ¯ e 1 , ϱ ) = 1 L * , thus for ϵ ( 0 , 1 ) , there exists n 0 N satisfying M ω , ψ ( u ¯ e n , u ¯ e 1 , ϱ ) > L * ( N s ( ϵ ) , ϵ ) for each n n 0 .
Thus, u ¯ e n B ( u ¯ e 1 , ϵ , ϱ ) where n n 0 .
Hence, u ¯ e n u ¯ e 1 . □
Definition 14. 
Consider ( χ ¯ , M ω , ψ , τ ) to be a MIFSMS and { u ¯ e n } a sequence in χ ¯ , then
1.
The sequence is Cauchy iff for every ϱ > 0 , which implies the existence of δ o N that satisfies
l t n o M ω , ψ ( u ¯ e n , u ¯ e n + m , t ) = 1 L *
where n , m δ o .
2.
The sequence converges to u ¯ iff for every ϱ > 0
l t n M ω , ψ ( u ¯ e n , u ¯ , ϱ ) = 1 L *
Definition 15. 
A MIFSMS ( χ ¯ , M ω , ψ , τ ) is complete iff every Cauchy sequence converges in it.
Theorem 7. 
If any Cauchy sequence in MIFSMS ( χ ¯ , M ω , ψ , τ ) has a subsequence that converges in it, then it is a complete space.
Proof. 
Consider { u ¯ e n } be any sequence which is Cauchy and { u ¯ e n i } be any of its subsequence converging to u ¯ .
Claim that u ¯ e n u ¯ .
Take ϱ > 0 and ϵ ( 0 , 1 ) .
Consider s ( 0 , 1 ) such that
τ ( ( 1 s , s ) , ( 1 s , s ) ) L * ( N s ( ϵ ) , ϵ ) .
Since sequence { u e n } is given as Cauchy, there exist e n o N such that
M ω , ψ ( u ¯ e m , u ¯ e n , ϱ 2 ) > L * ( N s ( s ) , s )
for all e m , e n e n o .
Since u ¯ e n i u ¯ , there exist positive integer e i p such that e i p > e n o ,
M ω , ψ ( u ¯ e i , u ¯ , ϱ 2 ) > L * ( N s ( s ) , s ) .
For, if e n e n o , we have
M ω , ψ ( u ¯ e n , u ¯ , ϱ ) L * τ ( M ω , ψ ( u ¯ e n , u ¯ e i p , ϱ 2 ) , M ω , ψ ( u ¯ e i p , u ¯ , ϱ 2 ) ) > L * τ ( ( 1 s , s ) , ( 1 s , s ) ) L * ( N s ( ϵ ) , ϵ ) .
Thus, u ¯ e n i u ¯ and ( χ ¯ , M ω , ψ , τ ) is a complete space. □

5. Fixed Point Theorems

In this section, we have extended Gregori-Sapena’s [14] and Zikic’s fixed point Theorem [15] to MIFSMS.
Definition 16. 
A sequence { t n } is known as s-increasing if there exists n o N such that
t n + 1 t n + 1 ,
for all n n o .
Theorem 8. 
Consider ( χ ¯ , M ω , ψ , τ ) be complete MIFSMS, so that for every s-increasing sequence { ϱ n } and arbitrary u ¯ e 1 , v ¯ e 2 S P ( χ ¯ ) , (1) holds
l t n i = 1 n M ω , ψ ( u ¯ e 1 , v ¯ e 2 , ϱ i ) = 1 L * .
Consider h ( 0 , 1 ) and S : S P ( χ ¯ ) S P ( χ ¯ ) be any map that satisfies
M ω , ψ ( S u ¯ e 1 , S v ¯ e 2 , h ϱ ) L * M ω , ψ ( u ¯ e 1 , v ¯ e 2 , ϱ )
for each u ¯ e 1 , v ¯ e 2 S P ( χ ¯ ) . Then, S possesses a fixed point which is unique as well.
Proof. 
Consider u ¯ S P ( χ ¯ ) and let u ¯ e n = S n ( u ¯ ) , n N . Thus,
M ω , ψ ( u ¯ e 1 , u ¯ e 2 , ϱ ) = M ω , ψ ( S u ¯ , S 2 u ¯ , ϱ ) L * M ω , ψ ( u ¯ , S u ¯ , ϱ h ) = M ω , ψ ( u ¯ , u ¯ e 1 , ϱ h ) .
By induction, we have
M ω , ψ ( u ¯ e n , u ¯ e n + 1 , ϱ ) L * M ω , ψ ( u ¯ , u ¯ e 1 , ϱ h n ) .
Consider ϱ > 0 . Now, for m , n N , take n < m ; considering r i > 0 , i = n , , m 1 that satisfies r n + r n + 1 + + r m 1 1 , we have
M ω , ψ ( u ¯ e n , u ¯ e m , ϱ ) L * τ m n 2 ( M ω , ψ ( u ¯ e n , u ¯ e n + 1 , r n ϱ ) , , M ω , ψ ( u ¯ e m 1 , u ¯ e m , r m 1 ϱ ) ) L * τ m n 2 ( M ω , ψ ( u ¯ , u ¯ e 1 , r n ϱ h n ) , , M ω , ψ ( u ¯ , u ¯ e 1 , r m 1 ϱ h m 1 ) ) .
Considering r p = 1 p ( p + 1 ) , p = n , , m 1 , we get
M ω , ψ ( u ¯ e n , u ¯ e m , ϱ ) L * τ m n 2 ( M ω , ψ ( u ¯ , u ¯ e 1 , ϱ n ( n + 1 ) h n ) , , M ω , ψ ( u ¯ , u ¯ e 1 , ϱ ( m 1 ) m h m 1 ) ) .
Now, define ϱ s = ϱ s ( s + 1 ) h s . It is trivial that ϱ s + 1 ϱ s as s , thus { ϱ s } is an s-increasing sequence. So, we have
l t n n = m M ω , ψ ( u ¯ , u ¯ e 1 , ϱ n ( n + 1 ) h n ) = 1 L * .
Equations (5) and (6) implies l t n M ω , ψ ( u ¯ e n , u ¯ e m , ϱ ) = 1 L * for n < m . Thus, sequence { u ¯ e n } is Cauchy. As χ ¯ is complete, there exist v ¯ S P ( χ ¯ ) so that u ¯ e n v ¯ . Claim that S possesses v ¯ as its fixed point.
M ω , ψ ( S v ¯ , v ¯ , ϱ ) L * τ ( l t n M ω , ψ ( S v ¯ , S u ¯ e n , ϱ 2 ) , l t n M ω , ψ ( u ¯ e n + 1 , v ¯ , ϱ 2 ) ) L * τ ( l t n M ω , ψ ( v ¯ , u ¯ e n , ϱ 2 ) , l t n M ω , ψ ( u ¯ e n + 1 , v ¯ , ϱ 2 ) ) = 1 L * .
Thus, M ω , ψ ( S v ¯ , v ¯ , ϱ ) = 1 L * , that implies S ( v ¯ ) = v ¯ .
Uniqueness: Consider w ¯ S P ( X ¯ ) to be any other fixed point of S so that S ( w ¯ ) = w ¯ . Thus, we have
1 L * L * M ω , ψ ( v ¯ , w ¯ , t ) = M ω , ψ ( S ( v ¯ ) , S ( w ¯ ) , ϱ ) L * M ω , ψ ( v ¯ , w ¯ , ϱ h ) = M ω , ψ ( S ( v ¯ ) , S ( w ¯ ) , ϱ h ) L * M ω , ψ ( v ¯ , w ¯ , ϱ h 2 ) = M ω , ψ ( S ( v ¯ ) , S ( w ¯ ) , ϱ h 2 ) L * l t n M ω , ψ ( v ¯ , w ¯ , ϱ h n ) = 1 L * .
Hence, M ω , ψ ( v ¯ , w ¯ , ϱ ) = 1 L * , that implies v ¯ = w ¯ . □
Example 3. 
Take χ ¯ = [ 0 , 2 ] and define Θ ( j ¯ , ¯ ) = ( j ¯ 1 ¯ 1 , m a x { j ¯ 2 , ¯ 2 } ) . Take ω , ψ soft fuzzy sets on S P ( χ ¯ ) × S P ( χ ¯ ) × ( 0 , ) given as M ω , ψ ( v ¯ , w ¯ , ϱ ) = ( e ( m a x { v ¯ , w ¯ } ϱ ) , 1 e ( m a x { v ¯ , w ¯ } ϱ ) ) , for all v ¯ , w ¯ S P ( χ ¯ ) , ϱ > 0 . Then, ( χ ¯ , M ω , ψ , Θ ) is a complete MIFSMS. Define a self map T : S P ( χ ¯ ) S P ( χ ¯ ) so that
T ( ι ¯ ) = 0 if ι ¯ = 1 ι ¯ 2 if ι ¯ [ 0 , 1 ) ι ¯ 4 if ι ¯ ( 1 , 2 ] .
Then, T satisfies Theorem 8 and possesses 0 as its unique fixed point.
Lemma 9. 
If G : ( 0 , ) [ 0 , 1 ] is an increasing function, then it satisfies
l t n i = n G ( ρ o i ) = 0 l t n i = n G ( ρ i ) = 0
for all ρ ( 0 , 1 ) and ∏ is taken as co-norm.
Proof. 
Case I Consider ρ < ρ o . Now, ρ i < ρ o i for i N , in view of the fact that G is increasing G ( ρ ) G ( ρ o ) . So, i = n G ( ρ i ) i = n G ( ρ o i ) , where n N . Hence, the proof is complete.
Case II Consider ρ ρ o . Suppose ρ = ρ o , then
i = 2 p G ( ρ i ) = [ i = p G ( ρ 2 i ) ] [ i = p G ( ρ 2 i + 1 ) ] [ i = p G ( ρ o i ) ] [ i = p G ( ρ o i ) ] .
Thus, we have l t p i = 2 p G ( ρ i ) 0 0 = 0 . Furthermore, l t p i = 2 p + 1 G ( ρ i ) l t p i = 2 p + 2 G ( ρ i ) = 0 that implies l t p i = p G ( ρ i ) = 0 if ρ = ρ o . As G is increasing it can be verified easily that l t p i = p G ( ρ i ) = 0 if ρ < ρ o .
Now, if ρ > ρ o , that implies the existence of p N so that ρ < ρ o ( 1 / 2 ) p and on repeating the above process p -times, we obtain l t p i = p G ( ρ i ) = 0 . □
Lemma 10. 
If H : ( 0 , ) [ 0 , 1 ] is a decreasing function, then it satisfies
l t n i = n H ( ρ o i ) = 1 l t n i = n H ( ρ i ) = 1
for all ρ ( 0 , 1 ) and ∏ is taken as norm ∗.
Proof. 
The above can be easily proved on the similar lines of Lemma 9. □
Lemma 11. 
The sequence u ¯ e n = S n ( u ¯ e 1 ) is a Cauchy sequence.
Proof. 
Consider G ( u ¯ ) = ψ ( u ¯ e 1 , S ( u ¯ e 1 ) , 1 u ¯ ) and H ( u ¯ ) = ω ( u ¯ e 1 , S ( u ¯ e 1 ) , 1 u ¯ ) , then maps G and H are increasing and decreasing, respectively, from ( 0 , ) to [ 0 , 1 ] . Consider h < ρ < 1 , then by Lemmas 9 and 10, we have
l t n i = n M ω , ψ ( u ¯ e 1 , S u ¯ e 1 , 1 ( h / ρ ) i ) = 1 L * .
As ρ < 1 , n = 1 ρ n < , so for every ϵ o > 0 there exist n o so that n = n o ρ n < ϵ o . Now, if ρ > n > n o and t > ϵ o , we have
M ω , ψ ( u ¯ e n , u ¯ e p , t ) L * M ω , ψ ( u ¯ e n , u ¯ e p , ϵ o ) L * i = n p 1 M ω , ψ ( u ¯ e i , u ¯ e i 1 , ρ i ) L * i = n p 1 M ω , ψ ( u ¯ e 1 , S u ¯ e 1 , ρ i h i ) = i = n p 1 M ω , ψ ( u ¯ e 1 , S u ¯ e 1 , 1 ( h / ρ ) i ) .
Thus, from Equation (12), we have l t n M ω , ψ ( u ¯ e n , S u ¯ e p , t ) = 1 L * where p > n . Thus, { u ¯ e n } is Cauchy. □
Theorem 12. 
Consider ( χ ¯ , M ω , ψ , τ ) to be complete MIFSMS, so that for some ρ o ( 0 , 1 ) and u ¯ e o S P ( χ ¯ ) , (14) holds
l t n i = n M ω , ψ ( u ¯ e o , S u ¯ e o , 1 ρ o i ) = 1 L * .
Consider h ( 0 , 1 ) and S : S P ( χ ¯ ) S P ( χ ¯ ) that satisfies
M ω , ψ ( S u ¯ e 1 , S v ¯ e 2 , h t ) L * M ω , ψ ( u ¯ e 1 , v ¯ e 2 , t )
for each u ¯ e 1 , v ¯ e 2 S P ( χ ¯ ) . Then, S possesses a fixed point which is unique as well.
Proof. 
We will be proving Theorem 12 by the above lemmas.
As ( χ ¯ , M ω , ψ , τ ) is complete MIFSMS, there exists v ¯ S P ( χ ¯ ) so that l t n u ¯ e n = v ¯ . Now, it can be easily proven that S possesses v ¯ as its fixed point which is unique as well by the similar argument as used in Theorem 8. This completes the proof of Theorem 12. □
Example 4. 
Take χ ¯ = [ 0 , 1 ] Q and define Θ ( ȷ ¯ , ¯ ) = ( m a x { ȷ ¯ 1 + ¯ 1 1 , 0 } , m i n { ȷ ¯ 2 + ¯ 2 , 1 } ) . Take ω , ψ soft fuzzy sets on S P ( χ ¯ ) × S P ( χ ¯ ) × ( 0 , ) given as M ω , ψ ( v ¯ , w ¯ , ϱ ) = ( 1 m a x { v ¯ , w ¯ } 1 + ϱ , m a x { v ¯ , w ¯ } 1 + ϱ ) , for all v ¯ , w ¯ S P ( χ ¯ ) , ϱ > 0 . Then, ( χ ¯ , M ω , ψ , Θ ) is a complete MIFSMS. Define a self map T : S P ( χ ¯ ) S P ( χ ¯ ) so that
T ( ι ¯ ) = ι ¯ 4 if ι ¯ [ 0 , 1 2 ] Q ι ¯ 2 if ι ¯ ( 1 2 , 1 ] Q .
Then, T satisfies Theorem 12 and possesses 0 as its unique fixed point.

6. Application

Now, we are giving an application of Theorem 8 in solving integral equation.
Consider the following integral equation:
ι ¯ e ( r ) = 0 r K ( r , s , ι ¯ e ( s ) ) d s
for all r [ 0 , I ] , where I > 0 and K C ( [ 0 , I ] × [ 0 , I ] × R , R ) . Consider χ ¯ = C ( [ 0 , I ] , R ) be the space consisting of continuous functions on [ 0 , I ] with the norm ι ¯ e = s u p r [ 0 , I ]   |   ι ¯ e ( r )   | , where ι ¯ e χ ¯ and the induced soft metric is defined as μ ( ι ¯ e , κ ¯ e ) = s u p r [ 0 , I ]   |   ι ¯ e ( r ) κ ¯ e ( r )   | , for all ι ¯ e , κ ¯ e χ ¯ . Let the MIFSM M ω , ψ be defined as
M ω , ψ ( ι ¯ e , κ ¯ e , ϱ ) = ( ϱ ϱ + s u p r [ 0 , I ]   |   ι ¯ e ( r ) κ ¯ e ( r )   | , s u p r [ 0 , I ]   |   ι ¯ e ( r ) κ ¯ e ( r )   | ϱ + s u p r [ 0 , I ]   |   ι ¯ e ( r ) κ ¯ e ( r )   | ) ,
where ϱ , m , n R + and τ ( u ¯ , v ¯ ) = ( u ¯ 1 v ¯ 1 , m i n ( u ¯ 2 + v ¯ 2 , 1 ) ) . Then, ( X ¯ , M ω , ψ , τ ) is a complete MIFSMS.
Now, claim the existence of a solution of (15).
Let function K satisfy the following conditions:
(i)
K ( r , s , ι ¯ e ( s ) ) 0 , for all r , s [ 0 , I ] and ι ¯ e χ ¯ ;
(ii)
There exist λ > 0 so that
|   K ( r , s , ι ¯ e ( s ) ) K ( r , s , κ ¯ e ( s ) ) λ s u p r [ 0 , I ] ι ¯ e ( r ) κ ¯ e ( r ) ,
for all r , s [ 0 , I ] ;
(iii)
There exist h ( 0 , 1 ) so that λ r < h .
Consider { t s } to be any s-increasing sequence, so that t s + 1 t s as s , thus l t n i = 1 n M ω , ψ ( ι ¯ e , κ ¯ e , t i ) = 1 L * .
Define a self map S : χ ¯ χ ¯ as
S ( ι ¯ e ) ( ȷ ) = 0 ȷ K ( ȷ , , ι ¯ e ( ) ) d ,
then, we have
S ( ι ¯ e ) ( ȷ ) S ( κ ¯ e ) ( ȷ ) = 0 ȷ K ( ȷ , , ι ¯ e ( ) ) K ( ȷ , , κ ¯ e ( ) ) d ,
thus
|   S ( ι ¯ e ) ( ȷ ) S ( κ ¯ e ) ( ȷ ) = |   0 ȷ K ( ȷ , , ι ¯ e ( ) ) K ( ȷ , , κ ¯ e ( ) ) d   | 0 ȷ K ( ȷ , , ι ¯ e ( ) ) K ( ȷ , , κ ¯ e ( ) ) d λ ȷ s u p ȷ [ 0 , I ] ι ¯ e ( ȷ ) κ ¯ e ( ȷ )   | < h s u p ȷ [ 0 , I ] ι ¯ e ( ȷ ) κ ¯ e ( ȷ ) .
Now, we have
M ω , ψ ( S ι ¯ e ( ȷ ) , S κ ¯ e ( ȷ ) , h ϱ ) = ( h ϱ h ϱ + s u p ȷ [ 0 , I ] S ι ¯ e ( ȷ ) S κ ¯ e ( ȷ )   | , s u p ȷ [ 0 , I ] S ι ¯ e ( ȷ ) S κ ¯ e ( ȷ )   | h ϱ + s u p ȷ [ 0 , I ] S ι ¯ e ( ȷ ) S κ ¯ e ( ȷ )   | ) = ( ϱ ϱ + s u p ȷ [ 0 , I ] S ι ¯ e ( ȷ ) S κ ¯ e ( ȷ )   | h , s u p ȷ [ 0 , I ] S ι ¯ e ( ȷ ) S κ ¯ e ( ȷ )   | h ϱ + s u p ȷ [ 0 , I ] S ι ¯ e ( ȷ ) S κ ¯ e ( ȷ )   | h ) L * ( ϱ ϱ + s u p ȷ [ 0 , I ] ι ¯ e ( ȷ ) κ ¯ e ( ȷ )   | , s u p ȷ [ 0 , I ] ι ¯ e ( ȷ ) κ ¯ e ( ȷ )   | ϱ + s u p ȷ [ 0 , I ] ι ¯ e ( ȷ ) κ ¯ e ( ȷ )   | ) = M ω , ψ ( ι ¯ e ( ȷ ) , κ ¯ e ( ȷ ) , ϱ ) .
Thus, M ω , ψ ( S ι ¯ e ( ȷ ) , S κ ¯ e ( ȷ ) , h ϱ ) L * M ω , ψ ( ι ¯ e ( ȷ ) , κ ¯ e ( ȷ ) , ϱ ) . Therefore, every assertion of Theorem 8 holds. Hence, S possesses a fixed point ζ ¯ χ ¯ which is unique as well so that S ζ ¯ = ζ ¯ , thus ζ ¯ C ( [ 0 , I ] , R ) satisfies integral Equation (15).

7. Conclusions

We have defined basic notions of MIFSMS in this paper. Some Theorems of MIFMS have been broadened in MIFSMS. FPT’s are also proven in our new space along with an application to the integral equation.

8. Discussion

The new results and examples formulated in this work lay the foundation of new results in the future. Moreover, to prove the validity of new results, an application is given in solving the integral equation.

Author Contributions

All the authors contributed equally to the preparation of this paper. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Acknowledgments

The authors thank all reviewers for their useful remarks which made our paper complete and significant.

Conflicts of Interest

The authors declare that there is no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
MIFSMSModified Intuitionistic Fuzzy Soft Metric Spaces
FSFuzzy Sets
IFSIntuitionistic Fuzzy Set
MSMetric Space
SMSSoft Metric Spaces
FSMSFuzzy Soft Metric Spaces
MIFMSModified Intuitionistic Fuzzy Metric Spaces

References

  1. Zadeh, L.A. Fuzzy Sets. Fuzzy Sets Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
  2. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
  3. Molodtsov, D. Soft set theory-First results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
  4. Das, S.; Samanta, S.K. Soft real sets, soft real numbers and their properties. J. Fuzzy Math. 2012, 20, 551–576. [Google Scholar]
  5. Das, S.; Samanta, S.K. On soft metric spaces. J. Fuzzy Math. 2013, 21, 707–734. [Google Scholar]
  6. Das, S.; Samanta, S.K. Soft metric. Ann. Fuzzy Math. Inform 2013, 6, 77–94. [Google Scholar]
  7. Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy Soft Set. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
  8. Beaula, T.; Gunaseeli, C. On fuzzy soft metric spaces. Malaya J. Math. 2014, 2, 197–202. [Google Scholar] [CrossRef] [PubMed]
  9. Shukla, S.; Dubey, N.; Shukla, R.; Mezník, I. Coincidence point of Edelstein type mappings in fuzzy metric spaces and application to the stability of dynamic markets. Axioms 2023, 12, 854. [Google Scholar] [CrossRef]
  10. Gupta, V.; Saini, R.K.; Kanwar, A. Some Common Coupled Fixed Point Results on Modified Intuitionistic Fuzzy Metric Spaces. Procedia Comput. Sci. 2016, 79, 32–40. [Google Scholar] [CrossRef]
  11. Gupta, V.; Gondhi, A. Fixed points of weakly compatible maps on modified intuitionistic fuzzy soft metric spaces. Int. J. Syst. Assur. Eng. Manag. 2021, 13, 1232–1238. [Google Scholar] [CrossRef]
  12. Saadati, R.; Sedgi, S.; Shobe, N. Modified intuitionistic fuzzy metric spaces and fixed point theorems. Chaos Solitons Fractals 2005, 38, 36–47. [Google Scholar] [CrossRef]
  13. Deschrijver, G.; Cornelis, C.; Kerre, E.E. On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 2004, 12, 45–61. [Google Scholar] [CrossRef]
  14. Gregori, V.; Sapena, A. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 125, 245–252. [Google Scholar] [CrossRef]
  15. Zikic, T. On fixed point theorems of Gregori and Sapena. Fuzzy Sets Syst. 2004, 144, 421–429. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Gupta, V.; Gondhi, A.; Shukla, R. Fixed Point Results in Modified Intuitionistic Fuzzy Soft Metric Spaces with Application. Mathematics 2024, 12, 1154. https://doi.org/10.3390/math12081154

AMA Style

Gupta V, Gondhi A, Shukla R. Fixed Point Results in Modified Intuitionistic Fuzzy Soft Metric Spaces with Application. Mathematics. 2024; 12(8):1154. https://doi.org/10.3390/math12081154

Chicago/Turabian Style

Gupta, Vishal, Aanchal Gondhi, and Rahul Shukla. 2024. "Fixed Point Results in Modified Intuitionistic Fuzzy Soft Metric Spaces with Application" Mathematics 12, no. 8: 1154. https://doi.org/10.3390/math12081154

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop