Multi-Pursuer and One-Evader Evasion Differential Game with Integral Constraints for an Infinite System of Binary Differential Equations
Abstract
:1. Introduction
2. Statement of the Problem
3. The Main Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chikrii, A.A.; Chikrii, G.T. Game problems of approach for quasilinear systems of general form. Proc. Steklov Inst. Math. 2019, 304, S44–S58. [Google Scholar] [CrossRef]
- Petrosyan, L.A. Differential Games of Pursuit; World Scientific: Singapore, 1993. [Google Scholar]
- Makkapati, V.R.; Tsiotras, P. Optimal evading strategies and task allocation in multi-player pursuit-evasion problems. Dyn. Games Appl. 2019, 9, 1168–1187. [Google Scholar] [CrossRef]
- Sun, W.; Tsiotras, P.; Lolla, T.; Subramani, D.N.; Lermusiaux, P.F.J. Multiple-pursuer/one-evader pursuit-evasion game in dynamic flowfields. JGCD 2017, 40, 1627–1637. [Google Scholar] [CrossRef]
- Ramana, M.V.; Kothari, M. Pursuit-Evasion Games of High Speed Evader. J. Intell. Robot. Syst. 2017, 85, 293–306. [Google Scholar] [CrossRef]
- Weintraub, I.E.; Pachter, M.; Garcia, E. An introduction to pursuit-evasion differential games. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 1049–1066. [Google Scholar] [CrossRef]
- Ruiz, B. Surveillance evasion between two identical differential drive robots. Eur. J. Control 2023, 75, 100935. [Google Scholar] [CrossRef]
- Fang, X.; Wang, C.; Xie, L.; Chen, J. Cooperative Pursuit With Multi-Pursuer and One Faster Free-Moving Evader. IEEE Trans. Cybern. 2022, 52, 1405–1414. [Google Scholar] [CrossRef]
- Garcia, E.; Casbeer, D.W.; Von Moll, A.; Pachter, M. Multiple Pursuer Multiple Evader Differential Games. IEEE Trans. Autom. Control 2021, 66, 2345–2350. [Google Scholar] [CrossRef]
- Garcia, E.; Bopardikar, S.D. Cooperative Containment of a High-speed Evader. In Proceedings of the American Control Conference (ACC), New Orleans, LA, USA, 25–28 May 2021; pp. 4698–4703. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Zhang, Y.; Shi, H.; Tang, L.; Li, M. Near-optimal interception strategy for orbital pursuit-evasion using deep reinforcement learning. Acta Astronaut. 2022, 198, 9–25. [Google Scholar] [CrossRef]
- Von Moll, A.; Pachter, M.; Fuchs, Z. Pure Pursuit with an Effector. Dyn. Games Appl. 2023, 13, 961–979. [Google Scholar] [CrossRef]
- Yazdaniyan, Z.; Shamsi, M.; Foroozandeh, Z.; de Pinho, M.d.R. A numerical method based on the complementarity and optimal control formulations for solving a family of zero-sum pursuit-evasion differential games. J. Comput. Appl. Math. 2020, 368, 112535. [Google Scholar] [CrossRef]
- Ibragimov, G.I.; Ferrara, M.; Ruziboev, M.; Pansera, B.A. Linear evasion differential game of one evader and several pursuers with integral constraints. Int. J. Game Theory 2021, 50, 729–750. [Google Scholar] [CrossRef]
- Ibragimov, G.I.; Salleh, Y. Simple motion evasion differential game of many pursuers and one evader with integral constraints on control functions of players. J. Appl. Math. 2012, 2012, 748096. [Google Scholar] [CrossRef]
- Kuchkarov, A.S.; Ibragimov, G.I.; Khakestari, M. On a Linear Differential Game of Optimal Approach of Many Pursuers with One Evader. J. Dyn. Control Syst. 2013, 19, 1–15. [Google Scholar] [CrossRef]
- Kuchkarov, A.S.; Ibragimov, G.I.; Ferrara, M. Simple motion pursuit and evasion differential games with many pursuers on manifolds with Euclidean metric. Discret. Dyn. Nat. Soc. 2016, 2016, 1386242. [Google Scholar] [CrossRef]
- Blagodatskikh, A.I.; Bannikov, A.S. Simultaneous multiple capture in the presence of evader’s defenders. Izv. Instituta Mat. Inform. Udmurt. Gos. Univ. 2023, 62, 10–29. [Google Scholar] [CrossRef]
- Blagodatskikh, A.I.; Petrov, N.N. Simultaneous Multiple Capture of Rigidly Coordinated Evaders. Dyn. Games Appl. 2019, 9, 594–613. [Google Scholar] [CrossRef]
- Grinikh, A.L.; Petrosyan, L.A. An Effective Punishment for an n-Person Prisoner’s Dilemma on a Network. Tr. Instituta Mat. Mekhaniki UrO RAN 2021, 27, 256–262. [Google Scholar] [CrossRef]
- Kumkov, S.S.; Patsko, V.S. Attacker-defender-target problem in the framework of space intercept. In Proceedings of the 57th Israel Annual Conference on Aerospace Sciences, Haifa, Israel, 15–16 March 2017. [Google Scholar]
- Fattorini, H.O. Time-Optimal control of solutions of operational differential equations. SIAM J. Control 1964, 2, 54–59. [Google Scholar]
- Fursikov, A.V. Optimal Control of Distributed Systems, Theory and Applications, Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 2000; Volume 187. [Google Scholar]
- Lions, J.L. Contrôle Optimal de Systémes Gouvernées par des Equations aux Dérivées Partielles; Dunod: Paris, France, 1968. [Google Scholar]
- Osipov, Y.S. The theory of differential games in systems with distributed parameters. Dokl. Akad. Nauk. SSSR 1975, 223, 1314–1317. [Google Scholar]
- Satimov, N.Y.; Tukhtasinov, M. Game problems on a fixed interval in controlled first-order evolution equations. Math. Notes 2006, 80, 578–589. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. On Some Game Problems for First-Order Controlled Evolution Equations. Differ. Equ. 2005, 41, 1169–1177. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. On Game Problems for Second-Order Evolution Equations. Russ. Math. 2007, 51, 49–57. [Google Scholar] [CrossRef]
- Tukhtasinov, M. Some problems in the theory of differential pursuit games in systems with distributed parameters. J. Appl. Math. Mech. 1995, 59, 979–984. [Google Scholar] [CrossRef]
- Tukhtasinov, M.; Mamatov, M.S. On Pursuit Problems in Controlled Distributed Parameters Systems. Math. Notes 2008, 84, 256–262. [Google Scholar] [CrossRef]
- Azamov, A.A.; Ruziboev, M.B. The time-optimal problem for evolutionary partial differential equations. J. Appl. Math. Mech. 2013, 77, 220–224. [Google Scholar] [CrossRef]
- Avdonin, S.A.; Ivanov, S.A. Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Cardona, D.; Delgado, J.; Grajales, B.; Ruzhansky, M. Control of the Cauchy problem on Hilbert spaces: A global approach via symbol criteria. Commun. Pure Appl. Anal. 2023, 22, 3295–3329. [Google Scholar] [CrossRef]
- Ibragimov, G.I. Optimal pursuit time for a differential game in the Hilbert space l2. ScienceAsia 2013, 39S, 25–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazimirova, R.; Ibragimov, G.; Pansera, B.A.; Ibragimov, A. Multi-Pursuer and One-Evader Evasion Differential Game with Integral Constraints for an Infinite System of Binary Differential Equations. Mathematics 2024, 12, 1183. https://doi.org/10.3390/math12081183
Kazimirova R, Ibragimov G, Pansera BA, Ibragimov A. Multi-Pursuer and One-Evader Evasion Differential Game with Integral Constraints for an Infinite System of Binary Differential Equations. Mathematics. 2024; 12(8):1183. https://doi.org/10.3390/math12081183
Chicago/Turabian StyleKazimirova, Ruzakhon, Gafurjan Ibragimov, Bruno Antonio Pansera, and Abdulla Ibragimov. 2024. "Multi-Pursuer and One-Evader Evasion Differential Game with Integral Constraints for an Infinite System of Binary Differential Equations" Mathematics 12, no. 8: 1183. https://doi.org/10.3390/math12081183
APA StyleKazimirova, R., Ibragimov, G., Pansera, B. A., & Ibragimov, A. (2024). Multi-Pursuer and One-Evader Evasion Differential Game with Integral Constraints for an Infinite System of Binary Differential Equations. Mathematics, 12(8), 1183. https://doi.org/10.3390/math12081183