Hyers–Ulam–Rassias Stability of Nonlinear Implicit Higher-Order Volterra Integrodifferential Equations from above on Unbounded Time Scales
Abstract
:1. Introduction
2. Elements of the Time Scale Calculus
3. Volterra-Type Integral Equations
4. Hyers–Ulam–Rassias Stability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ulam, S.M. A Collection of the Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Jung, S.M. A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007, 2007, 57064. [Google Scholar] [CrossRef]
- Castro, L.P.; Ramos, A. Hyers-Ulam-Russias stability for a class of nonlinear Volterra integral equations. Banach J. Math. Anal. 2009, 3, 36–43. [Google Scholar] [CrossRef]
- Gachpazan, M.; Baghani, O. Hyers-Ulam stability of Volterra integral equations. Int. J. Nonlinear Anal. Appl. 2010, 1, 19–25. [Google Scholar]
- Gavruta, P.; Gavruta, L. A new method for the generalized Hyers-Ulam-Rassias stability. Int. J. Nonlinear Anal. Appl. 2010, 1, 11–18. [Google Scholar]
- Castro, L.P.; Simoes, A.M. Hyers-Ulam-Rassias stability of nonlinear integral equations through the Bielecki metric. Math. Methods Appl. Sci. 2018, 41, 7367–7383. [Google Scholar] [CrossRef]
- Sevgin, S.; Sevli, H. Stability of a nonlinear Volterra integro-differential equation via a fixed point approach. J. Nonlinear Sci. Appl. 2016, 9, 200–207. [Google Scholar] [CrossRef]
- Zada, A.; Riaz, U.; Khan, F.U. Hyers-Ulam stability of impulsive integral equations. Boll. Unione Mat. Ital. 2019, 12, 453–467. [Google Scholar] [CrossRef]
- Shah, S.O.; Zada, A. The Ulam stability of non-linear Volterra integro-dynamic equations on time scales. Note Mat. 2019, 39, 57–69. [Google Scholar]
- Shah, S.O.; Tikare, S.; Osman, M. Ulam type stability results of nonlinear impulsive Volterra-Fredholm integro-dynamic adjoint equations on time scale. Mathematics 2023, 11, 4498. [Google Scholar] [CrossRef]
- Hilger, H. Analysis on measure chains. A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2003. [Google Scholar]
- Georgiev, S. Integral Equations on Time Scales; Atlantis Press: Paris, France, 2016. [Google Scholar]
- Andras, S.; Meszaros, A.R. Ulam-Hyers stability of dynamic equations on time scales via Picard operators. Appl. Math. Comput. 2013, 219, 4853–4864. [Google Scholar] [CrossRef]
- Hua, L.; Li, Y.; Feng, J. On Hyers-Ulam stability of dynamic integral equation on time scales. Math. Aeterna 2014, 4, 559–571. [Google Scholar]
- Bielecki, A. Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires. Bull. Pol. Acad. Sci. Math. 1956, 4, 261–264. [Google Scholar]
- Corduneanu, C. Integral Equations and Applications; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Corduneanu, C. Bielecki’s method in the theory of integral equations. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1984, 37, 23–40. [Google Scholar]
- Kulik, P.; Tisdell, C.C. Volterra integral equations on time scales. Basic qualitative and quantitative results with applications to initial value problems on unbounded domains. Int. J. Differ. Equ. 2008, 3, 103–133. [Google Scholar]
- Tisdell, C.C.; Zaidi, A. Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling. Nonlinear Anal. 2008, 68, 3504–3524. [Google Scholar] [CrossRef]
- Reinfelds, A.; Christian, S. Volterra integral equations on unbounded time scales. Int. J. Differ. Equ. 2019, 14, 169–177. [Google Scholar] [CrossRef]
- Reinfelds, A.; Christian, S. A nonstandard Volterra integral equation on time scales. Demonstr. Math. 2019, 52, 503–510. [Google Scholar] [CrossRef]
- Reinfelds, A.; Christian, S. Hyers-Ulam stability of Volterra type integral equations on time scales. Adv. Dyn. Syst. Appl. 2020, 15, 39–48. [Google Scholar]
- Reinfelds, A.; Christian, S. Hyers-Ulam stability of a nonlinear Volterra integral equations on time scales. In Differential and Difference Equations with Applications, Proceedings of the ICDDEA 2019, Lisbon, Portugal, 1–5 July 2019; Pinelas, S., Graef, J.R., Hilger, S., Kloeden, P., Schinas, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 123–131. [Google Scholar]
- Noori, M.I.; Mahmood, A.H. On a nonlinear Volterra-Fredholm integrodifferencial equation on time scale. Open Access Libr. J. 2020, 7, 1–10. [Google Scholar]
- Pachpatte, B.G. On certain Volterra integral and integrodifferential equations. Facta Univ. Ser. Math. Inform. 2008, 23, 1–12. [Google Scholar]
- Pachpatte, B.G. Implict type Volterra integrodifferential equation. Tamkang J. Math. 2010, 41, 97–107. [Google Scholar] [CrossRef]
- Pachpatte, D.B. Properties of solutions to nonlinear dynamic integral equations on time scales. Electron. J. Differ. Equations 2008, 2008, 1–8. [Google Scholar]
- Pachpatte, D.B. On a nonlinear dynamic integrodifferential equations on time scales. J. Appl. Anal. 2010, 16, 279–294. [Google Scholar] [CrossRef]
- Sikorska-Nowak, A. Integrodifferential equations of mixed type on time scales with Δ-HK and Δ-HKP integrals. Electron. J. Differ. Equations 2023, 2023, 1–20. [Google Scholar] [CrossRef]
- Reinfelds, A.; Christian, S. Nonlinear Volterra integrodifferential equations from above on unbounded time scales. Mathematics 2023, 11, 1760. [Google Scholar] [CrossRef]
- Inoan, D.; Marian, D. Semi-Hyers-Ulam-Rassias stability of some Volterra integro-differential equations via Laplace transform. Axioms 2023, 12, 279. [Google Scholar] [CrossRef]
- Simoes, A.M.; Carapau, F.; Correira, P. New sufficient conditions to Ulam stability for a class of higher order integro-differential equations. Symmetry 2021, 13, 2068. [Google Scholar] [CrossRef]
- Pachpatte, D.B. On a nonstandard Volterra type dynamic integral equation on time scales. Electron. J. Qual. Theory Differ. Equ. 2009, 72, 1–14. [Google Scholar] [CrossRef]
- Bohner, M. Some oscillation criteria for first order delay dynamic equations. Far East J. Appl. Math. 2005, 18, 289–304. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinfelds, A.; Christian, S. Hyers–Ulam–Rassias Stability of Nonlinear Implicit Higher-Order Volterra Integrodifferential Equations from above on Unbounded Time Scales. Mathematics 2024, 12, 1379. https://doi.org/10.3390/math12091379
Reinfelds A, Christian S. Hyers–Ulam–Rassias Stability of Nonlinear Implicit Higher-Order Volterra Integrodifferential Equations from above on Unbounded Time Scales. Mathematics. 2024; 12(9):1379. https://doi.org/10.3390/math12091379
Chicago/Turabian StyleReinfelds, Andrejs, and Shraddha Christian. 2024. "Hyers–Ulam–Rassias Stability of Nonlinear Implicit Higher-Order Volterra Integrodifferential Equations from above on Unbounded Time Scales" Mathematics 12, no. 9: 1379. https://doi.org/10.3390/math12091379
APA StyleReinfelds, A., & Christian, S. (2024). Hyers–Ulam–Rassias Stability of Nonlinear Implicit Higher-Order Volterra Integrodifferential Equations from above on Unbounded Time Scales. Mathematics, 12(9), 1379. https://doi.org/10.3390/math12091379